設(shè)函數(shù)
,其中
.
(1)若
,求
在
的最小值;
(2)如果
在定義域內(nèi)既有極大值又有極小值,求實(shí)數(shù)
的取值范圍;
(3)是否存在最小的正整數(shù)
,使得當(dāng)
時(shí),不等式
恒成立.
(1)
; (2)
;(3) 存在最小的正整數(shù)
,使得當(dāng)
時(shí),不等式
恒成立.
解析試題分析:(1) 由題意易知,
(
)得
(
舍去)
所以當(dāng)
時(shí),
單調(diào)遞減;當(dāng)
時(shí),
單調(diào)遞增,則
;
(2)由
在定義域內(nèi)既有極大值又有極小值可轉(zhuǎn)化為
的導(dǎo)函數(shù)
在
有兩個(gè)不等實(shí)根,即
在
有兩個(gè)不等實(shí)根,可求出
的范圍.
(3) 由不等式
,令
即可構(gòu)造函數(shù)
,再利用導(dǎo)數(shù)證明
在
即可.
試題解析:(1)由題意知,
的定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/ee/2/11bxx3.png" style="vertical-align:middle;" />,當(dāng)
時(shí),由
,得
(
舍去),當(dāng)
時(shí),
,當(dāng)
時(shí),
,所以當(dāng)
時(shí),
單調(diào)遞減;當(dāng)
時(shí),
單調(diào)遞增,
∴
.
(2)由題意
在
有兩個(gè)不等實(shí)根,即
在
有兩個(gè)不等實(shí)根,設(shè)![]()
,又對(duì)稱(chēng)軸![]()
,則
,解得
.
(3)對(duì)于函數(shù)
,令函數(shù)
,則
,
,所以函數(shù)
在
上單調(diào)遞增,又
時(shí),恒有
,即
恒成立.取
,則有![]()
恒成立.顯然,存在最小的正整數(shù)
,使得當(dāng)
時(shí),不等式
恒成立.
考點(diǎn):1.利用導(dǎo)數(shù)求函數(shù)最值;2.利用導(dǎo)數(shù)求參數(shù)范圍 3.構(gòu)造函數(shù)證明不等式恒成立.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)
(其中
為常數(shù)).
(I)當(dāng)
時(shí),求函數(shù)
的最值;
(Ⅱ)討論函數(shù)
的單調(diào)性.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)
,點(diǎn)
為一定點(diǎn),直線(xiàn)
分別與函數(shù)
的圖象和
軸交于點(diǎn)
,
,記
的面積為
.
(1)當(dāng)
時(shí),求函數(shù)
的單調(diào)區(qū)間;
(2)當(dāng)
時(shí), 若
,使得
, 求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)
,
,函數(shù)
的圖像在點(diǎn)
處的切線(xiàn)平行于
軸.
(1)求
的值;
(2)求函數(shù)
的極小值;
(3)設(shè)斜率為
的直線(xiàn)與函數(shù)
的圖象交于兩點(diǎn)
,(
),證明:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知實(shí)數(shù)
滿(mǎn)足
,
,設(shè)函數(shù)![]()
(1)當(dāng)
時(shí),求
的極小值;
(2)若函數(shù)
(
)的極小值點(diǎn)與
的極小值點(diǎn)相同,求證:
的極大值小于等于![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)![]()
(1)當(dāng)
時(shí),求函數(shù)
的極值;
(2)若函數(shù)
在定義域內(nèi)為增函數(shù),求實(shí)數(shù)m的取值范圍;
(3)若
,
的三個(gè)頂點(diǎn)
在函數(shù)
的圖象上,且
,
、
、
分別為
的內(nèi)角A、B、C所對(duì)的邊。求證:![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)
,且
.
(1)判斷
的奇偶性并說(shuō)明理由;
(2)判斷
在區(qū)間
上的單調(diào)性,并證明你的結(jié)論;
(3)若在區(qū)間
上,不等式
恒成立,試確定實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)函數(shù)
(其中
).
(Ⅰ)當(dāng)
時(shí),求函數(shù)
的單調(diào)區(qū)間;
(Ⅱ)當(dāng)
時(shí),求函數(shù)
在
上的最大值
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)
.
(1)若函數(shù)
在
上單調(diào)遞增,求實(shí)數(shù)
的取值范圍.
(2)記函數(shù)
,若
的最小值是
,求函數(shù)
的解析式.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com