(本小題14分)已知函數(shù)![]()
.
(1)若
,求曲線
在
處切線的斜率;
(2)求
的單調(diào)區(qū)間;
(3)設(shè)
,若對(duì)任意
,均存在
,使得
,求
的取值范圍。
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分14分) 已知函數(shù)
.
(Ⅰ)當(dāng)
時(shí),求函數(shù)
的單調(diào)區(qū)間;
(Ⅱ)當(dāng)
時(shí),函數(shù)
圖象上的點(diǎn)都在
所表示的平面區(qū)域內(nèi),求實(shí)數(shù)a的取值范圍.
(Ⅲ)求證:
(其中
,e是自然對(duì)數(shù)的底數(shù)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分14分)
已知函數(shù)
(
為實(shí)常數(shù)).
(Ⅰ)當(dāng)
時(shí),求函數(shù)
的單調(diào)區(qū)間;
(Ⅱ)若函數(shù)
在區(qū)間
上無(wú)極值,求
的取值范圍;
(Ⅲ)已知
且
,求證:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)![]()
![]()
(1)求函數(shù)的單調(diào)區(qū)間與極值點(diǎn);
(2)若
,方程
有三個(gè)不同的根,求
的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題12分)
已知函數(shù)![]()
(1)求函數(shù)
的單調(diào)區(qū)間和極值;
(2)已知
的圖象與函數(shù)
的圖象關(guān)于直線
對(duì)稱,證明:當(dāng)
時(shí),
;
(3)如果
且
,證明:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(12分)設(shè)函數(shù)
在
及
時(shí)取得極值.
(Ⅰ)求a、b的值;
(Ⅱ)若對(duì)于任意的
,都有
成立,求c的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)![]()
.
(1)求
的單調(diào)區(qū)間;
(2)設(shè)
,若對(duì)任意
,均存在
,使得
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分13分)
已知
.
(I)求函數(shù)
在
上的最小值;
(II)對(duì)一切
恒成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com