【題目】在
中,
.![]()
(1)求
與
的面積之比;
(2)若
為
中點(diǎn),
與
交于點(diǎn)
,且
,求
的值.
【答案】
(1)解:在
中,
,可得
,即點(diǎn)
在線段
靠近
點(diǎn)的四等分點(diǎn). 故
與
的面積之比為 ![]()
(2)解:因?yàn)?
,
,所以
,
因?yàn)?
為
中點(diǎn),所以
,
![]()
因?yàn)?
,所以
,即
,
又
,所以
,所以
.
【解析】(1)由已知利用向量的線性運(yùn)算得出向量共線,根據(jù)比值的關(guān)系可得出點(diǎn) M 在線段 B C 靠近 B 點(diǎn)的四等分點(diǎn),利用面積公式推導(dǎo)出 Δ A B M 與 Δ A B C 的面積之比為邊之比為
。(2)根據(jù)向量的線性運(yùn)算可得出
和
共線利用已知求出x = 3 y,再利用中點(diǎn)的性質(zhì)結(jié)合向量的線性運(yùn)算可得證
和
共線又得到2 x + y = 1,聯(lián)立兩式分別求出x、y的值即得結(jié)果。
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知線段AB的端點(diǎn)B在圓C1:x2+(y﹣4)2=16上運(yùn)動(dòng),端點(diǎn)A的坐標(biāo)為(4,0),線段AB中點(diǎn)為M, (Ⅰ)試求M點(diǎn)的軌C2方程;
(Ⅱ)若圓C1與曲線C2交于C,D兩點(diǎn),試求線段CD的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線的頂點(diǎn)在原點(diǎn),它的準(zhǔn)線過雙曲線
的右焦點(diǎn),而且與x軸垂直.又拋物線與此雙曲線交于點(diǎn)
,求拋物線和雙曲線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知
三邊所在直線方程:
,
,
(
).
(1)判斷
的形狀;
(2)當(dāng)
邊上的高為1時(shí),求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=ax+bx+cx , 其中c>a>0,c>b>0,若a,b,c是△ABC的三條邊長,則下列結(jié)論正確的是( ) ①對任意x∈(﹣∞,1),都有f(x)<0;
②存在x∈R,使ax , bx , cx不能構(gòu)成一個(gè)三角形的三條邊長;
③若△ABC為鈍角三角形,存在x∈(1,2),使f(x)=0.
A.①②
B.②③
C.①③
D.①②③
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義在R上的可導(dǎo)函數(shù)f(x)滿足f(1)=1,且2f′(x)>1,當(dāng)x∈[﹣
,
]時(shí),不等式f(2cosx)>
﹣2sin2
的解集為( )
A.(
,
)
B.(﹣
,
)
C.(0,
)
D.(﹣
,
)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知a,b,c為△ABC的內(nèi)角A,B,C的對邊,滿足
=
,函數(shù)f(x)=sinωx(ω>0)在區(qū)間[0,
]上單調(diào)遞增,在區(qū)間[
,π]上單調(diào)遞減.
(1)證明:b+c=2a;
(2)若f(
)=cos A,試判斷△ABC的形狀.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義:分子為1且分母為正整數(shù)的分?jǐn)?shù)稱為單位分?jǐn)?shù).我們可以把1分拆為若干個(gè)不同的單位分?jǐn)?shù)之和. 如:1=
+
+
,1=
+
+
+
,1=
+
+
+
+
,…依此類推可得:1=
+
+
+
+
+
+
+
+
+
+
+
+
,其中m≤n,m,n∈N* . 設(shè)1≤x≤m,1≤y≤n,則
的最小值為( )
A.![]()
B.![]()
C.![]()
D.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若函數(shù)y=f(x)是定義在R上的奇函數(shù),且在區(qū)間(﹣∞,0]上是減函數(shù),則不等式f(lnx)<﹣f(1)的解集為( )
A.(e,+∞)
B.(
,+∞)
C.(
,e)
D.(0,
)
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com