【題目】在平面直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為
(
為參數(shù)),曲線C2的參數(shù)方程為
(
為參數(shù)).在以O為極點,x軸的正半軸為極軸的極坐標(biāo)系中,射線l:θ=α 與C1,C2 各有一個交點.當(dāng) α=0時,這兩個交點間的距離為2,當(dāng) α=
時,這兩個交點重合.
(1) 求曲線C1,C2的直角坐標(biāo)方程
(2) 設(shè)當(dāng) α=
時,l與C1,C2的交點分別為A1,B1,當(dāng) α=-
時,l與C1,C2的交點分別為A2,B2,求四邊形A1A2B2B1的面積.
【答案】(1)C1,C2的普通方程分別為x2+y2=1和
+y2=1,(2)![]()
【解析】
(1)令α=0和α=
得a,b 值由參數(shù)方程與普通方程的互化求解得C1,C2的普通方程;(2)令α=
,得A1,B1的橫坐標(biāo),利用對稱性得A1,B1關(guān)于x軸對稱,得四邊形A1A2B2B1為等腰梯形,利用面積公式求解即可
由題C1 的普通方程為x2+y2=1;C2的普通方程為![]()
當(dāng)α=0時,射線l與C1,C2交點的直角坐標(biāo)分別為(1,0),(a,0),因為這兩點間的距離為2,所以a=3.
當(dāng)α=
時,射線l與C1,C2交點的直角坐標(biāo)分別為(0,1),(0,b),因為這兩點重合,所以b=1.
故C1,C2的普通方程分別為x2+y2=1和
+y2=1,
(2)當(dāng)α=
時,射線l與C1交點A1的橫坐標(biāo)為x=
,與C2交點B1的橫坐標(biāo)為x′=
.
當(dāng)α=-
時,射線l與C1,C2的兩個交點A2,B2分別與A1,B1關(guān)于x軸對稱,因此四邊形A1A2B2B1為梯形.
故四邊形A1A2B2B1的面積為
.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某地區(qū)發(fā)現(xiàn)某污染源,相關(guān)部門對污染情況進行調(diào)查研究后,發(fā)現(xiàn)一天中污染指數(shù)
與時刻x(時)的函數(shù)關(guān)系為
,其中a是與氣象有關(guān)的參數(shù),且
.按規(guī)定,若每天污染指數(shù)不超過2,則環(huán)保合格,否則需要整改.如果以每天中
的最大值作為當(dāng)天的污染指數(shù),并記為
,那么該地區(qū)污染指數(shù)的超標(biāo)情況為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于函數(shù)圖象的有下列說法:
①若函數(shù)
滿足
,則
的一個周期為
;
②若函數(shù)
滿足
,則
的圖象關(guān)于直線
對稱;
③函數(shù)
與函數(shù)
的圖象關(guān)于直線
對稱;
④若函數(shù)
與函數(shù)
的圖象關(guān)于原點對稱,則
,
其中正確的個數(shù)是( )
A.1B.2C.3D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某醫(yī)藥開發(fā)公司實驗室有
瓶溶液,其中
瓶中有細(xì)菌
,現(xiàn)需要把含有細(xì)菌
的溶液檢驗出來,有如下兩種方案:
方案一:逐瓶檢驗,則需檢驗
次;
方案二:混合檢驗,將
瓶溶液分別取樣,混合在一起檢驗,若檢驗結(jié)果不含有細(xì)菌
,則
瓶溶液全部不含有細(xì)菌
;若檢驗結(jié)果含有細(xì)菌
,就要對這
瓶溶液再逐瓶檢驗,此時檢驗次數(shù)總共為
.
(1)假設(shè)
,采用方案一,求恰好檢驗3次就能確定哪兩瓶溶液含有細(xì)菌
的概率;
(2)現(xiàn)對
瓶溶液進行檢驗,已知每瓶溶液含有細(xì)菌
的概率均為
.
若采用方案一.需檢驗的總次數(shù)為
,若采用方案二.需檢驗的總次數(shù)為
.
(i)若
與
的期望相等.試求
關(guān)于
的函數(shù)解析式
;
(ii)若
,且采用方案二總次數(shù)的期望小于采用方案一總次數(shù)的期望.求
的最大值.
參考數(shù)據(jù):![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某地舉辦水果觀光采摘節(jié),并推出配套旅游項目,統(tǒng)計了4月份100名游客購買水果的情況,得到如圖所示的頻率分布直方圖.
![]()
(1)若將消費金額不低于80元的游客稱為“水果達人”,現(xiàn)用分層抽樣的方法從樣本的“水果達人”中抽取5人,求這5人中消費金額不低于100元的人數(shù);
(2)從(1)中的5人中抽取2人作為幸運客戶免費參加配套旅游項目,請列出所有的可能結(jié)果,并求這2人中至少有1人購買金額不低于100元的概率;
(3)為吸引顧客,該地特推出兩種促銷方案,
方案一:每滿80元可立減8元;
方案二:金額超過50元但又不超過80元的部分打9折,金額超過80元但又不超過100元的部分打8折,金額超過100元的部分打7折.
若水果的價格為11元/千克,某游客要購買10千克,應(yīng)該選擇哪種方案.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
,
(1)分別求
的值:
(2)討論
的解的個數(shù):
(3)若對任意給定的
,都存在唯一的
,滿足
,求實數(shù)![]()
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了調(diào)查某大學(xué)學(xué)生在某天上網(wǎng)的時間,隨機對100名男生和100名女生進行了不記名的問卷調(diào)查,得到了如下的統(tǒng)計結(jié)果:
![]()
(1)若該大學(xué)共有女生750人,試估計其中上網(wǎng)時間不少于60分鐘的人數(shù);
(2)完成聯(lián)表,并回答能否有90%的把握認(rèn)為“大學(xué)生上網(wǎng)時間與性別有關(guān)”.
![]()
附:
,其中n=a+b+c+d為樣本容量.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓
的左、右焦點分別為
,過原點
且斜率為1的直線
交橢圓
于
兩點,四邊形
的周長與面積分別為8與
.
(Ⅰ)求橢圓
的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)直線
交橢圓
于
兩點,且
,求證:
到直線
的距離為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在口
中,
,沿
將
翻折到
的位置,使平面
平面
.
![]()
(1)求證:
平面
;
(2)若在線段
上有一點
滿足
,且二面角
的大小為
,求
的值.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com