函數(shù)
,過曲線
上的點(diǎn)
的切線方程為
.
(1)若
在
時(shí)有極值,求
的表達(dá)式;
(2)在(1)的條件下,求
在[-3,1]上的最大值;
(3)若函數(shù)
在區(qū)間[-2,1]上單調(diào)遞增,求實(shí)數(shù)b的取值范圍.
(1)
;(2)13;(3)
.
解析試題分析:(1)題目條件給出了關(guān)于
的兩組關(guān)系,第一問中又給出了一組關(guān)系,所以在第一問很容易就能將表達(dá)式求出;(2)我們求解無(wú)參函數(shù)在定區(qū)間上的最大值,只需求導(dǎo)看
在
上的單調(diào)性,然后找到極小值就是最小值,最大值通過比較端點(diǎn)值即可判斷出;(3)考查函數(shù)單調(diào)性的問題,我們可以將其轉(zhuǎn)化為不等式恒成立問題,轉(zhuǎn)化之后的不等式是比較常見的二次不等式恒成立,一般碰到這種問題我們采取分離參數(shù)的方法將參數(shù)分到一邊,求出另一邊的最值即可,另一邊的函數(shù)是常見的對(duì)勾函數(shù),在這里區(qū)間給的比較好,可以讓我們用基本不等式解出最大值,然后參數(shù)大于最大值即可.
試題解析:(1)由
得
,過
上點(diǎn)
的切線方
程為
,即
.而過
上點(diǎn)
的切
線方程為
,故
即
,∵
在
處有極值,
,
∴
,聯(lián)立解得
.∴
.
,令
得
或
,列下表: