【題目】設(shè)函數(shù)
,若函數(shù)
恰有兩個零點(diǎn),則實數(shù)
的取值范圍是( )
A.
B. ![]()
C.
D. ![]()
【答案】A
【解析】
由題意得方程
有兩個不同的實數(shù)根,從而得到函數(shù)
的圖象和函數(shù)
的圖象有兩個不同的交點(diǎn),畫出兩函數(shù)的圖象,結(jié)合圖象可得所求的范圍.
∵函數(shù)
恰有兩個零點(diǎn),
∴方程
有兩個不同的實數(shù)根,即方程
有兩個不同的實數(shù)根,
∴函數(shù)
的圖象和函數(shù)
的圖象有兩個不同的交點(diǎn).
①當(dāng)
時,顯然不符合題意.
②當(dāng)
時,函數(shù)
的圖象為過原點(diǎn)且斜率小于0的直線.
畫出兩函數(shù)的圖象,如下圖所示.
由圖象可得兩函數(shù)的圖象總有兩個不同的交點(diǎn).
所以
符合題意.
![]()
③當(dāng)
時,函數(shù)
的圖象為過原點(diǎn)且斜率大于0的直線.
畫出兩函數(shù)的圖象,如下圖所示.
由圖象可得,當(dāng)
時,兩函數(shù)的圖象總有一個交點(diǎn),
所以要使得兩函數(shù)的圖象再有一個交點(diǎn),只需直線
的斜率小于曲線
在原點(diǎn)處的切線的斜率.
由
,得
,
所以
,
所以
,解得
,
所以
.
![]()
綜上可得
或
.
故選A.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】利用獨(dú)立性檢驗的方法調(diào)查高中生性別與愛好某項運(yùn)動是否有關(guān),通過隨機(jī)調(diào)查200名高中生是否愛好某項運(yùn)動,利用
列聯(lián)表,由計算可得
,參照下表:
| 0.01 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| 2.706 | 3.841 | 5,024 | 6.635 | 7.879 | 10.828 |
得到的正確結(jié)論是( )
A. 有99%以上的把握認(rèn)為“愛好該項運(yùn)動與性別無關(guān)”
B. 有99%以上的把握認(rèn)為“愛好該項運(yùn)動與性別有關(guān)”
C. 在犯錯誤的概率不超過0.5%的前提下,認(rèn)為“愛好該項運(yùn)動與性別有關(guān)”
D. 在犯錯誤的概率不超過0.5%的前提下,認(rèn)為“愛好該項運(yùn)動與性別無關(guān)”
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】集合
,對于正整數(shù)m,集合S的任一m元子集中必有一個數(shù)為另外m-1個數(shù)乘積的約數(shù).則m的最小可能值為__________。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司生產(chǎn)一種產(chǎn)品,從流水線上隨機(jī)抽取100件產(chǎn)品,統(tǒng)計其質(zhì)量指數(shù)并繪制頻率分布直方圖(如圖1):
![]()
產(chǎn)品的質(zhì)量指數(shù)在
的為三等品,在
的為二等品,在
的為一等品,該產(chǎn)品的三、二、一等品的銷售利潤分別為每件1.5,3.5,5.5(單位:元),以這100件產(chǎn)品的質(zhì)量指數(shù)位于各區(qū)間的頻率代替產(chǎn)品的質(zhì)量指數(shù)位于該區(qū)間的概率.
(1)求每件產(chǎn)品的平均銷售利潤;
(2)該公司為了解年營銷費(fèi)用
(單位:萬元)對年銷售量
(單位:萬件)的影響,對近5年的年營銷費(fèi)用
和年銷售量
數(shù)據(jù)做了初步處理,得到的散點(diǎn)圖(如圖2)及一些統(tǒng)計量的值.
|
|
|
|
16.30 | 24.87 | 0.41 | 1.64 |
表中
,
,
,![]()
根據(jù)散點(diǎn)圖判斷,
可以作為年銷售量
(萬件)關(guān)于年營銷費(fèi)用
(萬元)的回歸方程.
(ⅰ)建立
關(guān)于
的回歸方程;
(ⅱ)用所求的回歸方程估計該公司應(yīng)投入多少營銷費(fèi),才能使得該產(chǎn)品一年的收益達(dá)到最大?(收益=銷售利潤-營銷費(fèi)用,取
)
參考公式:對于一組數(shù)據(jù):
,
,
,
,其回歸直線
的斜率和截距的最小乘估計分別為
,![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在邊長為60 cm的正方形鐵片的四角上切去相等的正方形,再把它沿虛線折起,做成一個無蓋的長方體箱子,箱底的邊長是多少時,箱子的容積最大?最大容積是多少?
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=|3x+2|.
(1)解不等式f(x)<4-|x-1|;
(2)已知m+n=1(m,n>0),若|x-a|-f(x)≤
(a>0)恒成立,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖①,已知矩形ABCD滿足AB=5,
,沿平行于AD的線段EF向上翻折(點(diǎn)E在線段AB上運(yùn)動,點(diǎn)F在線段CD上運(yùn)動),得到如圖②所示的三棱柱
.
![]()
⑴若圖②中△ABG是直角三角形,這里G是線段EF上的點(diǎn),試求線段EG的長度x的取值范圍;
⑵若⑴中EG的長度為取值范圍內(nèi)的最大整數(shù),且線段AB的長度取得最小值,求二面角
的值;
⑶在⑴與⑵的條件都滿足的情況下,求三棱錐A-BFG的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知偶函數(shù)
滿足
,現(xiàn)給出下列命題:①函數(shù)
是以2為周期的周期函數(shù);②函數(shù)
是以4為周期的周期函數(shù);③函數(shù)
為奇函數(shù);④函數(shù)
為偶函數(shù),則其中真命題的個數(shù)是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com