已知橢圓
的中心在原點(diǎn),焦點(diǎn)在
軸上,離心率為
,它的一個(gè)焦點(diǎn)恰好與拋物線
的焦點(diǎn)重合.
求橢圓
的方程;
設(shè)橢圓的上頂點(diǎn)為
,過(guò)點(diǎn)
作橢圓
的兩條動(dòng)弦
,若直線
斜率之積為
,直線
是否一定經(jīng)過(guò)一定點(diǎn)?若經(jīng)過(guò),求出該定點(diǎn)坐標(biāo);若不經(jīng)過(guò),請(qǐng)說(shuō)明理由.
(1)
;(2)恒過(guò)一定點(diǎn)
.
解析試題分析:(1)可設(shè)橢圓方程為
,因?yàn)闄E圓的一個(gè)焦點(diǎn)恰好與拋物線
的焦點(diǎn)重合,所以
,又
,所以
,又因
,得
,所以橢圓方程為
;
(2)由(1)知
,當(dāng)直線
的斜率不存在時(shí),可設(shè)
,設(shè)
,則
,
易得
,不合題意;故直線
的斜率存在.設(shè)直線
的方程為:
,(
),并代入橢圓方程,得:
①,設(shè)
,則
是方程①的兩根,由韋達(dá)定理
,由
,利用韋達(dá)定理代入整理得
,又因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/93/6/h3xln.png" style="vertical-align:middle;" />,所以
,此時(shí)直線
的方程為
,即可得出直線
的定點(diǎn)坐標(biāo).
(1)由題意可設(shè)橢圓方程為
,
因?yàn)闄E圓的一個(gè)焦點(diǎn)恰好與拋物線
的焦點(diǎn)重合,所以
,
又
,所以
,
又因
,得
,
所以橢圓方程為
;
(2)由(1)知
,
當(dāng)直線
的斜率不存在時(shí),設(shè)
,設(shè)
,則
,
,不合題意.
故直線
的斜率存在.設(shè)直線
的方程為:
,(
),并代入橢圓方程,得:
①
由
得
②
設(shè)
,則
是方程①的兩根,由韋達(dá)定理
,
由
得:
,
即
,整理得
,
又因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/93/6/h3xln.png" style="vertical-align:middle;" />,所以
,此時(shí)直線
的方程為
.
所以直線
恒過(guò)一定點(diǎn)
考點(diǎn):橢圓的標(biāo)準(zhǔn)方程;圓錐曲線的定點(diǎn)問(wèn)題.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知拋物線C:
的焦點(diǎn)為F,直線
與y軸的交點(diǎn)為P,與C的交點(diǎn)為Q,且
.
(1)求C的方程;
(2)過(guò)F的直線
與C相交于A,B兩點(diǎn),若AB的垂直平分線
與C相較于M,N兩點(diǎn),且A,M,B,N四點(diǎn)在同一圓上,求
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在平面直角坐標(biāo)系
中,原點(diǎn)為
,拋物線
的方程為
,線段
是拋物線
的一條動(dòng)弦.
(1)求拋物線
的準(zhǔn)線方程和焦點(diǎn)坐標(biāo)
;
(2)若
,求證:直線
恒過(guò)定點(diǎn);
(3)當(dāng)
時(shí),設(shè)圓
,若存在且僅存在兩條動(dòng)弦
,滿足直線
與圓
相切,求半徑
的取值范圍?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓
,
、
是橢圓的左右焦點(diǎn),且橢圓經(jīng)過(guò)點(diǎn)
.
(1)求該橢圓方程;
(2)過(guò)點(diǎn)
且傾斜角等于
的直線
,交橢圓于
、
兩點(diǎn),求
的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(2011•山東)在平面直角坐標(biāo)系xOy中,已知橢圓
.如圖所示,斜率為k(k>0)且不過(guò)原點(diǎn)的直線l交橢圓C于A,B兩點(diǎn),線段AB的中點(diǎn)為E,射線OE交橢圓C于點(diǎn)G,交直線x=﹣3于點(diǎn)D(﹣3,m).
(1)求m2+k2的最小值;
(2)若|OG|2=|OD|?|OE|,
(i)求證:直線l過(guò)定點(diǎn);
(ii)試問(wèn)點(diǎn)B,G能否關(guān)于x軸對(duì)稱?若能,求出此時(shí)△ABG的外接圓方程;若不能,請(qǐng)說(shuō)明理由.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓C:
的離心率為
,短軸一個(gè)端點(diǎn)到右焦點(diǎn)的距離為
.
(1)求橢圓C的方程;
(2)設(shè)直線
與橢圓C交于A、B兩點(diǎn),以
弦為直徑的圓過(guò)坐標(biāo)原點(diǎn)
,試探討點(diǎn)
到直線
的距離是否為定值?若是,求出這個(gè)定值;若不是,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在平面直角坐標(biāo)系xOy中,已知點(diǎn)A(0,-1),B點(diǎn)在直線y = -3上,M點(diǎn)滿足
,
,M點(diǎn)的軌跡為曲線C。
(1)求C的方程;
(2)P為C上的動(dòng)點(diǎn),l為C在P點(diǎn)處得切線,求O點(diǎn)到l距離的最小值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)橢圓C1:
=1(a>b>0)的左、右焦點(diǎn)分別為為
,
恰是拋物線C2:
的焦點(diǎn),點(diǎn)M為C1與C2在第一象限的交點(diǎn),且|MF2|=
.
(1)求C1的方程;
(2)平面上的點(diǎn)N滿足
,直線l∥MN,且與C1交于A,B兩點(diǎn),若
,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,已知
,
,
,
分別是橢圓
的四個(gè)頂點(diǎn),△
是一個(gè)邊長(zhǎng)為2的等邊三角形,其外接圓為圓
.
(1)求橢圓
及圓
的方程;
(2)若點(diǎn)
是圓
劣弧
上一動(dòng)點(diǎn)(點(diǎn)
異于端點(diǎn)
,
),直線
分別交線段
,橢圓
于點(diǎn)
,
,直線
與
交于點(diǎn)
.
(ⅰ)求
的最大值;
(ⅱ)試問(wèn):.
.,
兩點(diǎn)的橫坐標(biāo)之和是否為定值?若是,求出該定值;若不是,說(shuō)明理由.![]()
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com