【題目】已知函數
.
(1)求函數y=f(x)的極值;
(2)若存在實數x0∈(﹣1,0),且
,使得
,求實數a的取值范圍.
【答案】
(1)解:f′(x)=ax2+2x,
令f′(x)=0得x2=0,
.
x |
|
|
| 0 | (0,+∞) |
f′(x) | + | 0 | _ | 0 | + |
f(x) | ↗ | 極大值 | ↘ | 極小值 | ↗ |
∴函數y=f(x)的極大值為
;
極小值為f(0)=0.
(2)解:若存在
,使得
,
則由(1)可知,需要
(如圖1)或
(如圖2).
![]()
(圖1),
![]()
(圖2),
于是可得
.
【解析】(1)求出函數的導數,解關于導函數的方程,求出函數的單調區間,從而求出函數的極值即可;(2)根據函數的單調性得到關于a的不等式組,結合圖象解出即可.
【考點精析】關于本題考查的利用導數研究函數的單調性和函數的極值與導數,需要了解一般的,函數的單調性與其導數的正負有如下關系: 在某個區間
內,(1)如果
,那么函數
在這個區間單調遞增;(2)如果
,那么函數
在這個區間單調遞減;求函數
的極值的方法是:(1)如果在
附近的左側
,右側
,那么
是極大值(2)如果在
附近的左側
,右側
,那么
是極小值才能得出正確答案.
科目:高中數學 來源: 題型:
【題目】下列說法:①殘差可用來判斷模型擬合的效果;
②設有一個回歸方程
,變量x增加一個單位時,y平均增加5個單位;
③線性回歸方程
必過
;
④在一個2×2列聯表中,由計算得
=13.079,則有99%的把握確認這兩個變量間有關系(其中
);
其中錯誤的個數是( )
A. 0 B. 1 C. 2 D. 3.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知數列{an}的各項均為正數,滿足a1=1,ak+1﹣ak=ai . (i≤k,k=1,2,3,…,n﹣1)
(1)求證:
;
(2)若{an}是等比數列,求數列{an}的通項公式;
(3)設數列{an}的前n項和為Sn , 求證:
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在下列命題中:
①存在一個平面與正方體的12條棱所成的角都相等;
②存在一個平面與正方體的6個面所成較小的二面角都相等;
③存在一條直線與正方體的12條棱所成的角都相等;
④存在一條直線與正方體的6個面所成的角都相等.
其中真命題的個數為( )
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知拋物線
:
(
)的焦點為
,點
在拋物線
上,且
,直線
與拋物線
交于
,
兩點,
為坐標原點.
(1)求拋物線
的方程;
(2)求
的面積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4﹣4:坐標系與參數方程
在平面直角坐標系中,以坐標原點O為極點,x軸的正半軸為極軸建立極坐標系.已知直線l上兩點M,N的極坐標分別為(2,0),(
),圓C的參數方程
(θ為參數).
(Ⅰ)設P為線段MN的中點,求直線OP的平面直角坐標方程;
(Ⅱ)判斷直線l與圓C的位置關系.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com