【題目】已知函數(shù)f(x)=x2+ln23x﹣2a(x+3ln3x)+10a2 , 若存在x0使得
成立,則實(shí)數(shù)a的值為( )
A.![]()
B.![]()
C.![]()
D.![]()
【答案】D
【解析】解:函數(shù)f(x)=x2+ln23x﹣2a(x+3ln3x)+10a2=(ln3x﹣3a)2+(x﹣a)2 ,
函數(shù)f(x)可以看作是動(dòng)點(diǎn)M(x,ln3x)與動(dòng)點(diǎn)N(a,3a)之間距離的平方,
動(dòng)點(diǎn)M在函數(shù)y=ln3x的圖象上,N在直線y=3x的圖象上,![]()
問(wèn)題轉(zhuǎn)化為求直線上的動(dòng)點(diǎn)到曲線的最小距離,
由y=ln3x得,y'=
=3,解得x=
,
∴曲線上點(diǎn)M(
,0)到直線y=3x的距離最小,
最小距離d=
,
則f(x)≥
,
根據(jù)題意,要使f(x0)≤
,
則f(x0)=
,此時(shí)N恰好為垂足,
由kMN=
=﹣
,
解得a=
.
故選:D.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解全稱(chēng)命題(全稱(chēng)命題
:
,
,它的否定
:
,
;全稱(chēng)命題的否定是特稱(chēng)命題).
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
的一段圖像如圖所示.
![]()
(1)求此函數(shù)的解析式;
(2)求此函數(shù)在
上的單調(diào)遞增區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】我國(guó)是世界上嚴(yán)重缺水的國(guó)家,某市政府為了鼓勵(lì)居民節(jié)約用水,計(jì)劃調(diào)整居民生活用水收費(fèi)方案,擬確定一個(gè)合理的月用水量標(biāo)準(zhǔn)x(噸),一位居民的月用水量不超過(guò)x的部分按平價(jià)收費(fèi),超過(guò)x的部分按議價(jià)收費(fèi).為了了解居民用水情況,通過(guò)抽樣,獲得了某年100位居民每人的月均用水量(單位:噸),將數(shù)據(jù)按照[0,0.5),[0.5,1),…,[4,4.5)分成9組,制成了如圖所示的頻率分布直方圖. ![]()
(Ⅰ)求直方圖中a的值;
(Ⅱ)若將頻率視為概率,從該城市居民中隨機(jī)抽取3人,記這3人中月均用水量不低于3噸的人數(shù)為X,求X的分布列與數(shù)學(xué)期望.
(Ⅲ)若該市政府希望使85%的居民每月的用水量不超過(guò)標(biāo)準(zhǔn)x(噸),估計(jì)x的值(精確到0.01),并說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐P-ABCD中,AB//CD,且
.
![]()
(1)證明:平面PAB⊥平面PAD;
(2)若PA=PD=AB=DC,
,求二面角A-PB-C的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某射手平時(shí)射擊成績(jī)統(tǒng)計(jì)如表:
環(huán)數(shù) | 7環(huán)以下 | 7 | 8 | 9 | 10 |
概率 |
| a | b |
|
|
已知他射中7環(huán)及7環(huán)以下的概率為
.
求a和b的值;
求命中10環(huán)或9環(huán)的概率;
求命中環(huán)數(shù)不足9環(huán)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列{an}滿足
,an+1bn=bn+1an+bn , 且
(n∈N*),則數(shù)列{an}的前2n項(xiàng)和S2n取最大值時(shí),n= .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知過(guò)拋物線
的焦點(diǎn)
,斜率為
的直線交拋物線于
兩點(diǎn),且
.
(1)求該拋物線
的方程;
(2)過(guò)點(diǎn)
任意作互相垂直的兩條直線
,分別交曲線
于點(diǎn)
和
.設(shè)線段
的中點(diǎn)分別為
,求證:直線
恒過(guò)一個(gè)定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)
,
是非零向量,則“
,
共線”是“|
|+|
|=|
+
|”的( )
A.充分而不必要條件
B.必要而不充分條件
C.充分必要條件
D.既不充分也不必要條件
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,將一矩形花壇
擴(kuò)建成一個(gè)更大的矩形花壇
,要求
點(diǎn)在
上,
點(diǎn)在
上,且對(duì)角線
過(guò)
點(diǎn),已知
米,
米.
![]()
(1)要使矩形
的面積大于
平方米,則
的長(zhǎng)應(yīng)在什么范圍內(nèi)?
(2)當(dāng)
的長(zhǎng)度是多少時(shí),矩形花壇
的面積最小?并求出最小值.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com