已知橢圓
:
(
)的短軸長(zhǎng)與焦距相等,且過(guò)定點(diǎn)
,傾斜角為
的直線
交橢圓
于
、
兩點(diǎn).
(Ⅰ)求橢圓
的方程;
(Ⅱ)確定直線
在
軸上截距的范圍.
(Ⅰ)
;(Ⅱ)![]()
解析試題分析:(I)由已知得
,
,…………………………(2分)
又
,由此解出
,
………………………………(3分)
從而橢圓方程為
:
…………………(6分)
(II)設(shè)
:
,……………………………(7分)
與
聯(lián)立得:
……………………(9分)
則
………………………(11分)
得
,即
,∴直線
在
軸上截距的范圍是
……(13分)
考點(diǎn):橢圓的標(biāo)準(zhǔn)方程;橢圓的簡(jiǎn)單性質(zhì);直線與橢圓的綜合應(yīng)用。
點(diǎn)評(píng):直線和橢圓的綜合問(wèn)題,一般可以轉(zhuǎn)化為它們的方程所組成的方程組求解的問(wèn)題,從而用代數(shù)方法解決直線與橢圓的綜合問(wèn)題。
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分12分)橢圓
:
的左、右焦點(diǎn)分別為
,焦距為2,,過(guò)
作垂直于橢圓長(zhǎng)軸的弦長(zhǎng)
為3.
(Ⅰ)
求橢圓
的方程;
(Ⅱ)若過(guò)
的直線l交橢圓于
兩點(diǎn).并判斷是否存在直線l使得
的夾角為鈍角,若存在,求出l的斜率k的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(12分)已知橢圓
中心在原點(diǎn),一個(gè)焦點(diǎn)為
,且長(zhǎng)軸長(zhǎng)與短軸長(zhǎng)的比是
。
(1)求橢圓
的方程;(5分)
(2)是否存在斜率為
的直線
,使直線
與橢圓
有公共點(diǎn),且原點(diǎn)
與直線
的距離等于4;若存在,求出直線
的方程,若不存在,說(shuō)明理由。(7分)。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本題滿分12分)
已知橢圓的中心在原點(diǎn)
,焦點(diǎn)在坐標(biāo)軸上,直線
與該橢圓相交于
和
,且
,
,求橢圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,已知拋物線
,焦點(diǎn)為
,頂點(diǎn)為
,點(diǎn)
在拋物線上移動(dòng),
是
的中點(diǎn),
是
的中點(diǎn),求點(diǎn)
的軌跡方程.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分10分)
求過(guò)點(diǎn)M(0,1)且和拋物線C:
僅有一個(gè)公共點(diǎn)的直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本題滿分12分)
在直角坐標(biāo)系
中,點(diǎn)
到兩點(diǎn)
,
的距離之和等于
,設(shè)點(diǎn)
的軌跡為
。
(1)求曲線
的方程;
(2)過(guò)點(diǎn)
作兩條互相垂直的直線
分別與曲線
交于
和
。
①以線段
為直徑的圓過(guò)能否過(guò)坐標(biāo)原點(diǎn),若能求出此時(shí)的
值,若不能說(shuō)明理由;
②求四邊形
面積的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分12分)已知雙曲線的一條漸近線方程是
,若雙曲線經(jīng)過(guò)點(diǎn)
,求此雙曲線的標(biāo)準(zhǔn)方程。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本題16分)在平面直角坐標(biāo)系
中,
是拋物線
的焦點(diǎn),
是拋物線
上位于第一象限內(nèi)的任意一點(diǎn),過(guò)
三點(diǎn)的圓的圓心為
,點(diǎn)
到拋物線
的準(zhǔn)線的距離為
.
(Ⅰ)求拋物線
的方程;
(Ⅱ)是否存在點(diǎn)
,使得直線
與拋物線
相切于點(diǎn)
?若存在,求出點(diǎn)
的坐標(biāo);若不存在,說(shuō)明理由;
(Ⅲ)若點(diǎn)
的橫坐標(biāo)為
,直線
與拋物線
有兩個(gè)不同的交點(diǎn)
,
與圓
有兩個(gè)不同的交點(diǎn)
,求當(dāng)
時(shí),
的最小值.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com