【題目】某企業生產A,B兩種產品,生產1噸A種產品需要煤4噸、電18千瓦;生產1噸B種產品需要煤1噸、電15千瓦。現因條件限制,該企業僅有煤10噸,并且供電局只能供電66千瓦,若生產1噸A種產品的利潤為10000元;生產1噸B種產品的利潤是5000元,試問該企業如何安排生產,才能獲得最大利潤?
科目:高中數學 來源: 題型:
【題目】已知函數f(x)滿足f(x+y)=f(x)+f(y),當x>0時,有
,且f(1)=﹣2
(1)求f(0)及f(﹣1)的值;
(2)判斷函數f(x)的單調性,并利用定義加以證明;
(3)求解不等式f(2x)﹣f(x2+3x)<4.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,四邊形ABCD為矩形,DA⊥平面ABE,AE=EB=BC=2,
BF⊥平面ACE,且點F在CE上.
(1)求證:AE⊥BE;
(2)求三棱錐D—AEC的體積;
(3)設點M在線段AB上,且滿足AM=2MB,試在線段CE上確定一點N,
使得MN∥平面DAE.
![]()
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某公司2016年前三個月的利潤(單位:百萬元)如下:
月份 |
|
|
|
利潤 |
|
|
|
(1)求利潤
關于月份
的線性回歸方程;
(2)試用(1)中求得的回歸方程預測
月和
月的利潤;
(3)試用(1)中求得的回歸方程預測該公司2016年從幾月份開始利潤超過
萬?
相關公式:
,
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓
的焦距為
,左、右頂點分別為
、
,
是橢圓上一點, 記直線
、
的斜率為
、
,且有
.
(1)求橢圓
的方程;
(2)若直線
與橢圓
交于
、
兩點, 以
、
為直徑的圓經過原點, 且線段
的垂直平分線在
軸上的截距為
,求直線
的方程.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com