【題目】設(shè)函數(shù)
.
(1)求函數(shù)
的單調(diào)區(qū)間;
(2)若函數(shù)有兩個(gè)零點(diǎn),求滿足條件的最小正整數(shù)
的值.
【答案】(1) 當(dāng)
時(shí),
的單調(diào)遞增區(qū)間為
;當(dāng)
時(shí),
的單調(diào)遞減區(qū)間為
,單調(diào)遞增區(qū)間為
;(2)3.
【解析】
(1)先求導(dǎo),再對(duì)
進(jìn)行分類討論,利用導(dǎo)數(shù)與函數(shù)的單調(diào)性的關(guān)系即可得出;
(2)由(1)可知,若函數(shù)
有兩個(gè)零點(diǎn),則
,且
.轉(zhuǎn)化為求滿足
的最小正整數(shù)
的值,利用單調(diào)性判斷其零點(diǎn)所在的最小區(qū)間即可求得.
(1)函數(shù)
的定義域?yàn)?/span>
.
.
,
當(dāng)
時(shí),
,函數(shù)
在
上單調(diào)遞增;
當(dāng)
時(shí),由
,得
;由
,得
.所以函數(shù)
在
上單調(diào)遞減,在
上單調(diào)遞增.
綜上所述,當(dāng)
時(shí),
的單調(diào)遞增區(qū)間為
;
當(dāng)
時(shí),
的單調(diào)遞減區(qū)間為
,單調(diào)遞增區(qū)間為
.
(2)由(1)可知,若函數(shù)
有兩個(gè)零點(diǎn),則
,且
.
即
,
即
,
.
令
,易知
在
上是增函數(shù),且
,
又
,
即
.
所以存在
,使
,
當(dāng)
時(shí),
;當(dāng)
時(shí),
.
所以滿足
的最小正整數(shù)
的值為3.
又
時(shí),
,且函數(shù)
在
上單調(diào)遞減,在
上單調(diào)遞增,
時(shí),函數(shù)
有兩個(gè)零點(diǎn).
綜上,滿足條件的最小正整數(shù)
的值為3.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐
中,底面
為正方形,
平面
,
,點(diǎn)
分別為
的中點(diǎn).
![]()
(Ⅰ)求證:
;
(Ⅱ)求證:![]()
平面
;
(Ⅲ)求平面
與平面
所成二面角
(銳角)的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)![]()
,函數(shù)![]()
⑴當(dāng)
時(shí),求函數(shù)
的表達(dá)式;
⑵若
,函數(shù)
在
上的最小值是2 ,求
的值;
⑶在⑵的條件下,求直線![]()
與函數(shù)
的圖象所圍成圖形的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
,
.
(1)若對(duì)任意
,都有
成立,求實(shí)數(shù)
的取值范圍;
(2)若存在
,使
成立,求實(shí)數(shù)
的取值范圍;
(3)若對(duì)任意
,都有
成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】現(xiàn)拋擲兩枚骰子,記事件
為“朝上的2個(gè)數(shù)之和為偶數(shù)”,事件
為“朝上的2個(gè)數(shù)均為偶數(shù)”,則
( )
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四棱錐E﹣ABCD的側(cè)棱DE與四棱錐F﹣ABCD的側(cè)棱BF都與底面ABCD垂直,
,
//
,
.
![]()
(1)證明:
//平面BCE.
(2)設(shè)平面ABF與平面CDF所成的二面角為θ,求
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為認(rèn)真貫徹落實(shí)黨中央國(guó)務(wù)院決策部署,堅(jiān)持“房子是用來(lái)住的,不是用來(lái)炒的”定位,堅(jiān)持調(diào)控政策的連續(xù)性和穩(wěn)定性,進(jìn)一步穩(wěn)定某省市商品住房市場(chǎng),該市人民政府辦公廳出臺(tái)了相關(guān)文件來(lái)控制房?jī)r(jià),并取得了一定效果,下表是2019年2月至6月以來(lái)該市某城區(qū)的房?jī)r(jià)均值數(shù)據(jù):
| 2 | 3 | 4 | 5 | 6 |
| 9.80 | 9.70 |
| 9.30 | 9.20 |
已知:
.![]()
(1)若變量
、
具有線性相關(guān)關(guān)系,求房?jī)r(jià)均價(jià)
(千元/平方米)關(guān)于月份
的線性回歸方程
;
(2)根據(jù)線性回歸方程預(yù)測(cè)該市某城區(qū)7月份的房?jī)r(jià).
(參考公式:用最小二乘法求線性回歸方程
的系數(shù)公式
)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在直三棱柱
中,
,
,
,
.
![]()
(1)證明:
平面
;
(2)若
是棱
的中點(diǎn),在棱
上是否存在一點(diǎn)
,使DE∥平面
?證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,將一個(gè)邊長(zhǎng)為
的正三角形分成
個(gè)全等的正三角形,第一次挖去中間的一個(gè)小三角形,將剩下的
個(gè)小正三角形,分別再?gòu)闹虚g挖去一個(gè)小三角形,保留它們的邊,重復(fù)操作以上的做法,得到的集合為希爾賓斯基三角形.設(shè)
是前
次挖去的小三角形面積之和(如
是第
次挖去的中間小三角形面積,
是前
次挖去的
個(gè)小三角形面積之和),則
_____________ ,
__________.
![]()
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com