【題目】某商場一年中各月份的收入、支出情況的統(tǒng)計如圖所示,下列說法中正確的是______.
![]()
①2至3月份的收入的變化率與11至12月份的收入的變化率相同;
②支出最高值與支出最低值的比是6:1;
③第三季度平均收入為50萬元;
④利潤最高的月份是2月份。
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義在[e,+∞)上的函數(shù)f(x)滿足f(x)+xlnxf′(x)<0且f(2018)=0,其中f′(x)是函數(shù)
的導(dǎo)函數(shù),e是自然對數(shù)的底數(shù),則不等式f(x)>0的解集為( )
A. [e,2018) B. [2018,+∞) C. (e,+∞) D. [e,e+1)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】6支鋼筆中有4支為正品,2支為次品,現(xiàn)需要通過檢測將其進(jìn)行區(qū)分,每次隨機(jī)抽出一支鋼筆進(jìn)行檢測,檢測后不放回,直到完全將正品和次品區(qū)分開,用
表示直到檢測結(jié)束時檢測進(jìn)行的次數(shù),則
( )
A.
B.
C.
D.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校高二年級共有1000 名學(xué)生,為了了解學(xué)生返校上課前口罩準(zhǔn)備的情況,學(xué)校統(tǒng)計了所有學(xué)生口罩準(zhǔn)備的數(shù)量,并繪制了如下頻率分布直方圖.
(1)求
的值;
(2)現(xiàn)用分層抽樣的方法,從口罩準(zhǔn)備數(shù)量在
和
的學(xué)生中選10人參加視頻會議,則兩組各選多少人?
(3)在(2)的條件下,從參加視頻會議的10人中隨機(jī)抽取3人,參與學(xué)校組織的復(fù)學(xué)演練.記
為這3人中口罩準(zhǔn)備數(shù)量在
的學(xué)生人數(shù),求
的分布列與數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于下列命題:
①若
是第一象限角,且
,則
;
②函數(shù)
是偶函數(shù);
③函數(shù)
的一個對稱中心是
;
④函數(shù)
在
上是增函數(shù),
所有正確命題的序號是_____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】[選修4-4:坐標(biāo)系與參數(shù)方程]
在直角坐標(biāo)系
中,曲線
的參數(shù)方程為
(
為參數(shù)),以原點(diǎn)
為極點(diǎn),
軸的正半軸為極軸建立極坐標(biāo)系,曲線
的極坐標(biāo)方程為
.
(1)寫出曲線
的普通方程和曲線
的直角坐標(biāo)方程;
(2)已知點(diǎn)
是曲線
上的動點(diǎn),求點(diǎn)
到曲線
的最小距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知
是等差數(shù)列,滿足
,
,數(shù)列
滿足
,
,且
是等比數(shù)列.
(1)求數(shù)列
和
的通項公式;
(2)求數(shù)列
的前
項和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)
.
(Ⅰ)當(dāng)曲線
在點(diǎn)
處的切線與直線
垂直時,求
的值;
(Ⅱ)若函數(shù)
有兩個零點(diǎn),求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)n 為不小于3的正整數(shù),集合
,對于集合
中的任意元素
,
記![]()
(Ⅰ)當(dāng)
時,若
,請寫出滿足
的所有元素![]()
(Ⅱ)設(shè)
且
,求
的最大值和最小值;
(Ⅲ)設(shè)S是
的子集,且滿足:對于S中的任意兩個不同元素
,有
成立,求集合S中元素個數(shù)的最大值.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com