【題目】已知二次函數(shù)
.
(
)若函數(shù)
在
上單調(diào)遞減,求實(shí)數(shù)
的取值范圍.
(
)是否存在常數(shù)
,當(dāng)
時(shí),
在值域?yàn)閰^(qū)間
且
?
【答案】(1)
.(2) 存在常數(shù)
,
,
滿足條件.
【解析】試題分析:
(1)結(jié)合二次函數(shù)的對(duì)稱軸得到關(guān)于實(shí)數(shù)m的不等式,求解不等式可得實(shí)數(shù)
的取值范圍為
.
(2)
在區(qū)間
上是減函數(shù),在區(qū)間
上是增函數(shù).據(jù)此分類討論:
①當(dāng)
時(shí),
.
②當(dāng)
時(shí),
.
③當(dāng)
,
.
綜上可知,存在常數(shù)
,
,
滿足條件.
試題解析:
(
)∵二次函數(shù)
的對(duì)稱軸為
,
又∵
在
上單調(diào)遞減,
∴
,
,
即實(shí)數(shù)
的取值范圍為
.
(
)
在區(qū)間
上是減函數(shù),在區(qū)間
上是增函數(shù).
①當(dāng)
時(shí),在區(qū)間
上,
最大,
最小,
∴
,即
,
解得
.
②當(dāng)
時(shí),在區(qū)間
上,
最大,
最小,
∴
,解得
.
③當(dāng)
,在區(qū)間
上,
最大,
最小,
∴
,即
,
解得
或
,
∴
.
綜上可知,存在常數(shù)
,
,
滿足條件.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某家庭進(jìn)行理財(cái)投資,根據(jù)長(zhǎng)期收益率市場(chǎng)預(yù)測(cè),投資
類產(chǎn)品的收益與投資額成正比,投資
類產(chǎn)品的收益與投資額的算術(shù)平方根成正比.已知投資1萬(wàn)元時(shí)
兩類產(chǎn)品的收益分別為0.125萬(wàn)元和0.5萬(wàn)元.
(1)分別寫(xiě)出
兩類產(chǎn)品的收益與投資額的函數(shù)關(guān)系;
(2)該家庭有20萬(wàn)元資金,全部用于理財(cái)投資,問(wèn):怎么分配資金能使投資獲得最大收益,其最大收益是多少萬(wàn)元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙、丙三人獨(dú)立地對(duì)某一技術(shù)難題進(jìn)行攻關(guān).甲能攻克的概率為
,乙能攻克的概率為
,丙能攻克的概率為
.
(1)求這一技術(shù)難題被攻克的概率;
(2)若該技術(shù)難題末被攻克,上級(jí)不做任何獎(jiǎng)勵(lì);若該技術(shù)難題被攻克,上級(jí)會(huì)獎(jiǎng)勵(lì)a萬(wàn)元.獎(jiǎng)勵(lì)規(guī)則如下:若只有1人攻克,則此人獲得全部獎(jiǎng)金a萬(wàn)元;若只有2人攻克,則獎(jiǎng)金獎(jiǎng)給此二人,每人各得
萬(wàn)元;若三人均攻克,則獎(jiǎng)金獎(jiǎng)給此三人,每人各得
萬(wàn)元.設(shè)甲得到的獎(jiǎng)金數(shù)為X,求X的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)集合
=
冪函數(shù)
=
的圖象不過(guò)原點(diǎn)
,則集合A的真子集的個(gè)數(shù)為
A. 1 B. 2 C. 3 D. 無(wú)數(shù)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義在
上的函數(shù)
滿足:
對(duì)任意
、![]()
恒成立,當(dāng)
時(shí),
.
(1)求證
在
上是單調(diào)遞增函數(shù);
(2)已知
,解關(guān)于
的不等式
;
(3)若
,且不等式
對(duì)任意
恒成立.求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知a>0,函數(shù)f(x)=ax2+bx+c,若x0滿足關(guān)于x的方程2ax+b=0,則下列選項(xiàng)的命題中為假命題的是( )
A.x∈R,f(x)≤f(x0)
B.x∈R,f(x)≥f(x0)
C.x∈R,f(x)≤f(x0)
D.x∈R,f(x)≥f(x0)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商場(chǎng)出售兩款型號(hào)不同的手機(jī),由于市場(chǎng)需求發(fā)生變化,第一款手機(jī)連續(xù)兩次提價(jià)10%,第二款手機(jī)連續(xù)兩次降價(jià)10%,結(jié)果都以1210元出售.
(1)求第一款手機(jī)的原價(jià);
(2)若該商場(chǎng)同時(shí)出售兩款手機(jī)各一部,求總售價(jià)與總原價(jià)之間的差額.(結(jié)果精確到整數(shù))
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系xOy中,直線C1的參數(shù)方程為
(t為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為ρ2(1+2sin2θ)=3.
(Ⅰ)寫(xiě)出C1的普通方程和C2的直角坐標(biāo)方程;
(Ⅱ)直線C1與曲線C2相交于A,B兩點(diǎn),點(diǎn)M(1,0),求||MA|﹣|MB||.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
將
的圖象向右平移兩個(gè)單位,得到函數(shù)
的圖象.
(1)求函數(shù)
的解析式;
(2)若方程
在
上有且僅有一個(gè)實(shí)根,求
的取值范圍;
(3)若函數(shù)
與
的圖象關(guān)于直線
對(duì)稱,設(shè)
,已知
對(duì)任意的
恒成立,求
的取值范圍.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com