設(shè)函數(shù)![]()
(Ⅰ)當(dāng)
時(shí),求
的單調(diào)區(qū)間;
(Ⅱ)若當(dāng)
時(shí),
恒成立,求
的取值范圍.
(1)
的單增區(qū)間為
,
;單減區(qū)間為
;(2)
.
解析試題分析:本題主要考查導(dǎo)數(shù)的運(yùn)算以及利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性和最值以及恒成立問題,考查函數(shù)思想,分類討論思想,考查綜合分析和解決問題的能力.第一問,將
代入得到具體的函數(shù)解析式,利用
為增函數(shù),
為減函數(shù),解不等式求出函數(shù)的單調(diào)區(qū)間;第二問,化簡(jiǎn)
解析式,由于
,所以只需
恒成立即可,所以設(shè)出新函數(shù)
,求導(dǎo),判斷
的取值范圍,求出函數(shù)
的最小值,令最小值大于等于0,判斷符合題意的
的取值范圍.
試題解析:(1)當(dāng)
時(shí),
,
2分
令
得
;令
得![]()
所以
的單增區(qū)間為
,
;單減區(qū)間為
5分
(2)
,令
,
,
7分
當(dāng)
時(shí),
,
在
上為增函數(shù),而
,從而當(dāng)
時(shí),![]()
恒成立. 9分
當(dāng)
時(shí),令
,得
.當(dāng)
時(shí),
,
在
上是減函數(shù),而
,從而當(dāng)
時(shí),
,即![]()
綜上,
的取值范圍是
12分
考點(diǎn):1.利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性;2.恒成立問題;3.利用導(dǎo)數(shù)研究函數(shù)的最值.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)=
ax2-(2a+1)x+2ln x,a∈R.
(1)若曲線y=f(x)在x=1和x=3處的切線互相平行,求a的值;
(2)求f(x)的單調(diào)區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
在
處存在極值.
(1)求實(shí)數(shù)
的值;
(2)函數(shù)
的圖像上存在兩點(diǎn)A,B使得
是以坐標(biāo)原點(diǎn)O為直角頂點(diǎn)的直角三角形,且斜邊AB的中點(diǎn)在
軸上,求實(shí)數(shù)
的取值范圍;
(3)當(dāng)
時(shí),討論關(guān)于
的方程
的實(shí)根個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)=(ax2+bx+c)ex且f(0)=1,f(1)=0.
(1)若f(x)在區(qū)間[0,1]上單調(diào)遞減,求實(shí)數(shù)a的取值范圍;
(2)當(dāng)a=0時(shí),是否存在實(shí)數(shù)m使不等式2f(x)+4xex≥mx+1≥-x2+4x+1對(duì)任意x∈R恒成立?若存在,求出m的值,若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)![]()
(1)求
的最小值;
(2)設(shè)
,
.
(ⅰ)證明:當(dāng)
時(shí),
的圖象與
的圖象有唯一的公共點(diǎn);
(ⅱ)若當(dāng)
時(shí),
的圖象恒在
的圖象的上方,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù)
.
(1)求
的單調(diào)區(qū)間;
(2)設(shè)函數(shù)
,若當(dāng)
時(shí),
恒成立,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
經(jīng)調(diào)查統(tǒng)計(jì),某種型號(hào)的汽車在勻速行駛中,每小時(shí)的耗油量
(升)關(guān)于行駛速度
(千米/時(shí))的函數(shù)可表示為
.已知甲、乙兩地相距
千米,在勻速行駛速度不超過
千米/時(shí)的條件下,該種型號(hào)的汽車從甲地 到乙地的耗油量記為
(升).
(Ⅰ)求函數(shù)
的解析式;
(Ⅱ)討論函數(shù)
的單調(diào)性,當(dāng)
為多少時(shí),耗油量
為最少?最少為多少升?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
.
(Ⅰ)若
,且對(duì)于任意
恒成立,試確定實(shí)數(shù)
的取值范圍;
(Ⅱ)設(shè)函數(shù)
,
求證:![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知關(guān)于
的函數(shù)![]()
(Ⅰ)當(dāng)
時(shí),求函數(shù)
的極值;
(Ⅱ)若函數(shù)
沒有零點(diǎn),求實(shí)數(shù)
取值范圍.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com