如圖,已知點(diǎn)
為橢圓![]()
右焦點(diǎn),圓![]()
與橢圓
的一個(gè)公共點(diǎn)為
,且直線
與圓
相切于點(diǎn)
.![]()
(1)求
的值及橢圓
的標(biāo)準(zhǔn)方程;
(2)設(shè)動(dòng)點(diǎn)
滿足
,其中M、N是橢圓
上的點(diǎn),
為原點(diǎn),直線OM與ON的斜率之積為
,求證:
為定值.
(1)
;(2)證明過(guò)程詳見(jiàn)解析.
解析試題分析:本題主要考查橢圓的標(biāo)準(zhǔn)方程以及幾何性質(zhì)等基礎(chǔ)知識(shí),考查學(xué)生分析問(wèn)題解決問(wèn)題的能力和計(jì)算能力.第一問(wèn),由橢圓C過(guò)點(diǎn)(0,1)點(diǎn),所以得到
,由
,得
,在直角三角形AFB中,利用勾股定理求參數(shù)a,c的值,從而得到橢圓的標(biāo)準(zhǔn)方程;第二問(wèn),設(shè)出點(diǎn)M,N,P的坐標(biāo),代入到
中,得到
與
、
的關(guān)系,得到
與
、
的關(guān)系,又由于點(diǎn)M,N在橢圓上,代入橢圓方程中,得到關(guān)系式,都代入到所求的式子中,化簡(jiǎn)得到定值.
試題解析:(1)由題意可知
,又
.又
. 2分
在
中,
,![]()
故橢圓的標(biāo)準(zhǔn)方程為:
6分
(2)設(shè)![]()
∵M(jìn)、N在橢圓上,∴![]()
又直線OM與ON的斜率之積為
,∴
,
于是![]()
.故
為定值. 13分
考點(diǎn):橢圓的標(biāo)準(zhǔn)方程以及幾何性質(zhì).
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)橢圓
的中心和拋物線
的頂點(diǎn)均為原點(diǎn)
,
、
的焦點(diǎn)均在
軸上,過(guò)
的焦點(diǎn)F作直線
,與
交于A、B兩點(diǎn),在
、
上各取兩個(gè)點(diǎn),將其坐標(biāo)記錄于下表中:![]()
![]()
(1)求
,
的標(biāo)準(zhǔn)方程;
(2)若
與
交于C、D兩點(diǎn),
為
的左焦點(diǎn),求
的最小值;
(3)點(diǎn)
是
上的兩點(diǎn),且
,求證:
為定值;反之,當(dāng)
為此定值時(shí),
是否成立?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知點(diǎn)
在拋物線
上,直線
(
,且
)與拋物線
,相交于
、
兩點(diǎn),直線
、
分別交直線
于點(diǎn)
、
.
(1)求
的值;
(2)若
,求直線
的方程;
(3)試判斷以線段
為直徑的圓是否恒過(guò)兩個(gè)定點(diǎn)?若是,求這兩個(gè)定點(diǎn)的坐標(biāo);若不是,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
巳知橢圓
的離心率是
.
⑴若點(diǎn)P(2,1)在橢圓上,求橢圓的方程;
⑵若存在過(guò)點(diǎn)A(1,0)的直線
,使點(diǎn)C(2,0)關(guān)于直線
的對(duì)稱(chēng)點(diǎn)在橢圓上,求橢圓的焦距的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在平面直角坐標(biāo)系xOy中,設(shè)曲線C1:
所圍成的封閉圖形的面積為
,曲線C1上的點(diǎn)到原點(diǎn)O的最短距離為
.以曲線C1與坐標(biāo)軸的交點(diǎn)為頂點(diǎn)的橢圓記為C2.
(1)求橢圓C2的標(biāo)準(zhǔn)方程;
(2)設(shè)AB是過(guò)橢圓C2中心O的任意弦,l是線段AB的垂直平分線.M是l上的點(diǎn)(與O不重合).
①若MO=2OA,當(dāng)點(diǎn)A在橢圓C2上運(yùn)動(dòng)時(shí),求點(diǎn)M的軌跡方程;
②若M是l與橢圓C2的交點(diǎn),求△AMB的面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖所示,已知
、
、
是長(zhǎng)軸長(zhǎng)為
的橢圓
上的三點(diǎn),點(diǎn)
是長(zhǎng)軸的一個(gè)端點(diǎn),
過(guò)橢圓中心
,且
,
.![]()
(1)求橢圓
的方程;
(2)在橢圓
上是否存點(diǎn)
,使得
?若存在,有幾個(gè)(不必求出
點(diǎn)的坐標(biāo)),若不存在,請(qǐng)說(shuō)明理由;
(3)過(guò)橢圓
上異于其頂點(diǎn)的任一點(diǎn)
,作圓
的兩條線,切點(diǎn)分別為
、
,,若直線
在
軸、
軸上的截距分別為
、
,證明:
為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,橢圓C:
的左頂點(diǎn)為A,M是橢圓C上異于點(diǎn)A的任意一點(diǎn),點(diǎn)P與點(diǎn)A關(guān)于點(diǎn)M對(duì)稱(chēng).![]()
(1)若點(diǎn)P的坐標(biāo)
,求m的值;
(2)若橢圓C上存在點(diǎn)M,使得
,求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓
:
的離心率為
,右焦點(diǎn)為(
,0).
(1)求橢圓
的方程;
(2)若過(guò)原點(diǎn)
作兩條互相垂直的射線,與橢圓交于
,
兩點(diǎn),求證:點(diǎn)
到直線
的距離為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在平面直角坐標(biāo)系xOy中,M、N分別是橢圓
=1的頂點(diǎn),過(guò)坐標(biāo)原點(diǎn)的直線交橢圓于P、A兩點(diǎn),其中P在第一象限,過(guò)P作x軸的垂線,垂足為C,連結(jié)AC,并延長(zhǎng)交橢圓于點(diǎn)B,設(shè)直線PA的斜率為k.![]()
(1)若直線PA平分線段MN,求k的值;
(2)當(dāng)k=2時(shí),求點(diǎn)P到直線AB的距離d;
(3)對(duì)任意k>0,求證:PA⊥PB..
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com