【題目】正三角形
的邊長為2,將它沿高
翻折,使點(diǎn)
與點(diǎn)
間的距離為
,此時(shí)四面體
外接球表面積為__________.
【答案】![]()
【解析】分析:由題意將幾何體補(bǔ)形為三棱柱,結(jié)合三棱柱的幾何特征整理計(jì)算即可求得最終結(jié)果.
詳解:根據(jù)題意可知三棱錐BACD的三條側(cè)棱BD⊥AD、DC⊥DA,
底面是等腰三角形,它的外接球就是它擴(kuò)展為三棱柱的外接球,
求出三棱柱的底面中心連線的中點(diǎn)到頂點(diǎn)的距離,就是球的半徑,
三棱柱的底面邊長為1,1,
,
由題意可得:三棱柱上下底面中點(diǎn)連線的中點(diǎn),到三棱柱頂點(diǎn)的距離相等,說明中心就是外接球的球心,
∴三棱柱的外接球的球心為O,外接球的半徑為r,
棱柱的高為
,球心到底面的距離為
,
三棱柱中,底面△BDC,BD=CD=1,BC=
,∴∠BDC=120°,
△BDC的外接圓的半徑為:
,
∴球的半徑為
.
外接球的表面積為:
.
故答案為:
.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】過拋物線y2=4x的焦點(diǎn)F的直線交拋物線于A,B兩點(diǎn),且|AF|=2|BF|,則直線AB的斜率為( )
A.![]()
B.![]()
C.
或 ![]()
D.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我國古代數(shù)學(xué)著作《九章算術(shù)》有如下問題:“今有蒲(水生植物名)生一日,長三尺;莞(植物名,俗稱水蔥、席子草)生一日,長一尺.蒲生日自半,莞生日自倍.問幾何日而長等?”意思是:今有蒲生長1日,長為3尺;莞生長1日,長為1尺.蒲的生長逐日減半,莞的生長逐日增加1倍.若蒲、莞長度相等,則所需的時(shí)間約為日.(結(jié)果保留一位小數(shù),參考數(shù)據(jù):lg2≈0.30,lg3≈0.48)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓
:
(其中
為圓心)上的每一點(diǎn)橫坐標(biāo)不變,縱坐標(biāo)變?yōu)樵瓉淼囊话耄玫角
.
(1)求曲線
的方程;
(2)若點(diǎn)
為曲線
上一點(diǎn),過點(diǎn)
作曲線
的切線交圓
于不同的兩點(diǎn)
(其中
在
的右側(cè)),已知點(diǎn)
.求四邊形
面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工廠生產(chǎn)某種產(chǎn)品,每生產(chǎn)1噸產(chǎn)品需人工費(fèi)4萬元,每天還需固定成本3萬元.經(jīng)過長期調(diào)查統(tǒng)計(jì),每日的銷售額
(單位:萬元)與日產(chǎn)量
(單位:噸)滿足函數(shù)關(guān)系
,已知每天生產(chǎn)4噸時(shí)利潤為7萬元.
(1)求
的值;
(2)當(dāng)日產(chǎn)量為多少噸時(shí),每天的利潤最大,最大利潤為多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一個(gè)正方體的平面展開圖及該正方體的直觀圖的示意圖如圖所示.![]()
(1)請按字母F、G、H標(biāo)記在正方體相應(yīng)地頂點(diǎn)處(不需要說明理由);
(2)判斷平面BEG與平面ACH的位置關(guān)系.并說明你的結(jié)論;
(3)證明:直線DF⊥平面BEG.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓
的右焦點(diǎn)為
,上頂點(diǎn)為
,
周長為
,離心率為
.
(1)求橢圓
的方程;
(2)若點(diǎn)
是橢圓
上第一象限內(nèi)的一個(gè)點(diǎn),直線
過點(diǎn)
且與直線
平行,直線
且
與橢圓
交于
兩點(diǎn),與
交于點(diǎn)
,是否存在常數(shù)
,使
.若存在,求出
的值,若不存在,請說明理由.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com