設(shè)等差數(shù)列{
}的前
項(xiàng)和為
,已知
=
,
.
(Ⅰ) 求數(shù)列{
}的通項(xiàng)公式;
(Ⅱ)求數(shù)列{
}的前n項(xiàng)和
;
(Ⅲ)當(dāng)n為何值時(shí),
最大,并求
的最大值.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
等差數(shù)列{an}的前n項(xiàng)和為Sn,已知S3=
,且S1,S2,S4成等比數(shù)列,
(1)求數(shù)列{an}的通項(xiàng)公式.
(2)若{an}又是等比數(shù)列,令bn=
,求數(shù)列{bn}的前n項(xiàng)和Tn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列
是等差數(shù)列,且![]()
(Ⅰ)求數(shù)列
的通項(xiàng)公式;
(Ⅱ)令
求數(shù)列
前n項(xiàng)和的公式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知
,且方程
有兩個(gè)不同的正根,其中一根是另一根的
倍,記等差數(shù)列
、
的前
項(xiàng)和分別為
,
且
(
)。
(1)若
,求
的最大值;
(2)若
,數(shù)列
的公差為3,試問在數(shù)列
與
中是否存在相等的項(xiàng),若存在,求出由這些相等項(xiàng)從小到大排列得到的數(shù)列
的通項(xiàng)公式;若不存在,請說明理由.
(3)若
,數(shù)列
的公差為3,且
,
.
試證明:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(1)已知等差數(shù)列
中
,
,求
的公差
;
(2)有三個(gè)數(shù)成等比數(shù)列,它們的和等于14,它們的積等于64,求該數(shù)列的公比
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知公差大于零的等差數(shù)列
的前n項(xiàng)和為
,且滿足:
,
.
(1)求數(shù)列
的通項(xiàng)公式
;
(2)若數(shù)列
是等差數(shù)列,且
,求非零常數(shù)c;
(3)在(2)的條件下,設(shè)
,已知數(shù)列
為遞增數(shù)列,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)等差數(shù)列
的公差
,等比數(shù)列
為公比為
,且
,
,
.
(1)求等比數(shù)列
的公比
的值;
(2)將數(shù)列
,
中的公共項(xiàng)按由小到大的順序排列組成一個(gè)新的數(shù)列
,是否存在正整數(shù)
(其中
)使得
和
都構(gòu)成等差數(shù)列?若存在,求出一組
的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知等差數(shù)列
滿足:
,
,
的前n項(xiàng)和為
.
(Ⅰ)求
及
;
(Ⅱ)令bn=
(n
N*),求數(shù)列
的前n項(xiàng)和
.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com