設(shè)
為數(shù)列
的前
項(xiàng)和,對(duì)任意的
,都有
(
為正常數(shù)).
(1)求證:數(shù)列
是等比數(shù)列;
(2)數(shù)列
滿足
求數(shù)列
的通項(xiàng)公式;
(3)在滿足(2)的條件下,求數(shù)列
的前
項(xiàng)和
.
(1)證明詳見解析;(2)
;(3)
.
解析試題分析:(1)利用
求出
與
的關(guān)系,判斷數(shù)列是等差數(shù)列,從而寫出等差數(shù)列的通項(xiàng)公式;(2)因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/bc/f/1d7qj2.png" style="vertical-align:middle;" />,所以可以證明
是首項(xiàng)為
,公差為1的等差數(shù)列,先求出
的通項(xiàng)公式,再求
;(3)把第(2)問(wèn)的
代入,利用錯(cuò)位相減法求
.
試題解析:(1)證明:當(dāng)
時(shí),
,解得
. 1分
當(dāng)
時(shí),
.即
. 2分
又
為常數(shù),且
,∴
.
∴數(shù)列
是首項(xiàng)為1,公比為
的等比數(shù)列. 3分
(2)解:
. 4分
∵
,∴![]()
,即
. 5分
∴
是首項(xiàng)為
,公差為1的等差數(shù)列. 6分
∴
,即
. 7分
(3)解:由(2)知
,則
所以
8分
當(dāng)
為偶數(shù)時(shí),![]()
令
①
則
②
①-②得
=![]()
=
=![]()
10分
令
③
④
③-④得![]()
=
=
=![]()
11分![]()
12分
當(dāng)
為奇數(shù)時(shí),
為偶數(shù), ![]()
=![]()
14分
法二
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知等差數(shù)列
的前
項(xiàng)和為
,公差
,
,且
成等比數(shù)列.
(Ⅰ)求數(shù)列
的通項(xiàng)公式;
(Ⅱ)求數(shù)列
的前
項(xiàng)和公式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知
是正數(shù)列組成的數(shù)列,
,且點(diǎn)
在函數(shù)
的圖像上,
(Ⅰ)求
的通項(xiàng)公式;
(Ⅱ)若數(shù)列
滿足
,
,求證:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在等差數(shù)列{an}中,
為其前n項(xiàng)和
,且![]()
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)
,求數(shù)列
的前
項(xiàng)和
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
數(shù)列{an}是公比為
的等比數(shù)列,且1-a2是a1與1+a3的等比中項(xiàng),前n項(xiàng)和為Sn;數(shù)列{bn}是等差數(shù)列,b1=8,其前n項(xiàng)和Tn滿足Tn=n
·bn+1(
為常數(shù),且
≠1).
(I)求數(shù)列{an}的通項(xiàng)公式及
的值;
(Ⅱ)比較
+
+
+ +
與
Sn的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知數(shù)列
是首項(xiàng)為1,公差為
的等差數(shù)列,數(shù)列
是首項(xiàng)為1,公比為
的等比
數(shù)列.
(1)若
,
,求數(shù)列
的前
項(xiàng)和;
(2)若存在正整數(shù)
,使得
.試比較
與
的大小,并說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)Sn為等差數(shù)列{a n}的前n項(xiàng)和,已知a 9 =-2,S 8 =2.
(1)求首項(xiàng)a1和公差d的值;
(2)當(dāng)n為何值時(shí),Sn最大?并求出Sn的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知已知
是等差數(shù)列,期中
,![]()
求: 1.
的通項(xiàng)公式
2.數(shù)列
從哪一項(xiàng)開始小于0?
3.求![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)數(shù)列
的前
項(xiàng)和為
, ![]()
(1)若
,求
;
(2)若
,求
的前6項(xiàng)和
;
(3)若
,證明
是等差數(shù)列.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com