【題目】在新冠肺炎疫情的影響下,南充高中響應(yīng)“停課不停教,停課不停學(xué)”的號召進(jìn)行線上教學(xué),高二年級的甲乙兩個班中,需根據(jù)某次數(shù)學(xué)測試成績選出某班的5名學(xué)生參加數(shù)學(xué)競賽決賽,已知這次測試他們?nèi)〉玫某煽兊那o葉圖如圖所示,其中甲班5名學(xué)生成績的平均分是83,乙班5名學(xué)生成績的中位數(shù)是86.
![]()
(1)求出x,y的值,且分別求甲乙兩個班中5名學(xué)生成績的方差
,并根據(jù)結(jié)
果,你認(rèn)為應(yīng)該選派哪一個班的學(xué)生參加決賽?
(2)從成績在85分及以上的學(xué)生中隨機(jī)抽取2名.求至少有1名來自甲班的概率.
【答案】(1)答案見解析 .(2)![]()
【解析】
(1)根據(jù)甲平均成績可計(jì)算得x的值,根據(jù)乙中位數(shù)可得y的值;由方差公式即可求得兩個班的方差,并根據(jù)平均數(shù)和方差的意義,作出選擇.
(2)根據(jù)古典概型概率求法,列舉出所有可能,即可求解.
(1)甲班的平均分為
,
解得![]()
易知
.
;
又乙班的平均分為
,
∴
;
∵
,
,
說明甲班同學(xué)成績更加穩(wěn)定,故應(yīng)選甲班參加.
(2)85分及以上甲班有2人,設(shè)為
;乙班有3人,設(shè)為
,
從這5人中抽取2人的選法有:
,共10種,
其中甲班至少有1名學(xué)生的選法有7種,
則甲班至少有1名學(xué)生被抽到的概率為![]()
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)
,命題p:函數(shù)
在
內(nèi)單調(diào)遞增;q:函數(shù)
僅在
處有極值.
(1)若命題q是真命題,求a的取值范圍;
(2)若命題
是真命題,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線C:
經(jīng)過點(diǎn)
,A,B是拋物線C上異于點(diǎn)O的不同的兩點(diǎn),其中O為原點(diǎn).
(1)求拋物線C的方程,并求其焦點(diǎn)坐標(biāo)和準(zhǔn)線方程;
(2)若
,求
面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓
(
)的左右焦點(diǎn)分別為
,
為橢圓
上位于
軸同側(cè)的兩點(diǎn),
的周長為
,
的最大值為
.
(Ⅰ)求橢圓
的方程;
(Ⅱ)若
,求四邊形
面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖:在四棱錐
中,
平面
.
,
,
.點(diǎn)
是
與
的交點(diǎn),點(diǎn)
在線段
上且
.
![]()
(1)證明:
平面
;
(2)求直線
與平面
所成角的正弦值;
(3)求二面角
的正切值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】PM2.5是指大氣中直徑小于或等于2.5微米的顆粒物,也稱為可入肺顆粒物,我國PM2.5標(biāo)準(zhǔn)采用世界衛(wèi)生組織設(shè)定的最寬限值,PM2.5日均值在35微克/立方米以下空氣質(zhì)量為一級;在35微克/立方米~75微克/立方米之間空氣質(zhì)量為二級;在75微克/立方米及其以上空氣質(zhì)量為超標(biāo).
某試點(diǎn)城市環(huán)保局從該市市區(qū)2016年全年每天的PM2.5監(jiān)測數(shù)據(jù)中隨機(jī)抽取6天的數(shù)據(jù)作為樣本,監(jiān)測值莖葉圖(十位為莖,個位為葉)如圖所示,若從這6天的數(shù)據(jù)中隨機(jī)抽出2天,
![]()
(1)求恰有一天空氣質(zhì)量超標(biāo)的概率;
(2)求至多有一天空氣質(zhì)量超標(biāo)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線
的頂點(diǎn)在原點(diǎn),焦點(diǎn)在
軸正半軸上,點(diǎn)
到其準(zhǔn)線的距離等于
.
(Ⅰ)求拋物線
的方程;
(Ⅱ)如圖,過拋物線
的焦點(diǎn)的直線從左到右依次與拋物線
及圓
交于
、
、
、
四點(diǎn),試證明
為定值.
![]()
(Ⅲ)過
、
分別作拋物
的切線
、
,且
、
交于點(diǎn)
,求
與
面積之和的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】把五個標(biāo)號為1到5的小球全部放入標(biāo)號為1到4的四個盒子中,并且不許有空盒,那么任意一個小球都不能放入標(biāo)有相同標(biāo)號的盒子中的概率是( )
A.
B.
C.
D.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
,其中
.
(Ⅰ)當(dāng)
時,求曲線
在點(diǎn)
處的切線方程;
(Ⅱ)若函數(shù)
有唯一零點(diǎn),求
的值.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com