【題目】如圖,矩形
和梯形
所在平面互相垂直,
,
,
.
![]()
(1)求證:
平面
;
(2)當(dāng)
的長(zhǎng)為何值時(shí),直線
與平面
所成角的大小為45°?
【答案】(1)答案見解析(2)![]()
【解析】
(1)(法一)以
為原點(diǎn),
所在直線為
軸,
所在直線為
軸,
所在直線為
建系.根據(jù)三角形相似可得
,故由勾股定理可知
.求得面
的法向量
,再由向量的數(shù)量積求得
,可得證;
(法二)由矩形和梯形的幾何性質(zhì)得出線線平行,再由面面平行的判定定理可證得面
面
,由面面平行的性質(zhì)可得證;
(2)由(1)可得面BCE的法向量
,由線面角的向量計(jì)算方法建立方程可求得.
(1)(法一)如圖,以
為原點(diǎn),
所在直線為
軸,
所在直線為
軸,
所在直線為
建系.
設(shè)
,由
,
,
,依據(jù)三角形相似可得
,故由勾股定理可知
.
在
中,可得
.
所以各點(diǎn)坐標(biāo)為
.
,設(shè)面
的法向量為
,所以
,
化簡(jiǎn)得
,令
得
,得
,故
.
又
不在面
上,所以
面
.
(法二)
因?yàn)榫匦?/span>
,故
.又
,且
,
,
![]()
在面
上,![]()
在面
上,故面
面
.
又
在面
上,且
不在面
上,故
面
.
(2)
,
設(shè)面
法向量為
,所以
,化簡(jiǎn)得
,令
,得
.
由題得
.
故
,因?yàn)?/span>
為正,所以
.
![]()
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓
的右焦點(diǎn)
,
,
,
是橢圓上任意三點(diǎn),
,
關(guān)于原點(diǎn)對(duì)稱且滿足
.
(1)求橢圓
的方程.
(2)若斜率為
的直線與圓:
相切,與橢圓
相交于不同的兩點(diǎn)
、
,求
時(shí),求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】由我國(guó)引領(lǐng)的5G時(shí)代已經(jīng)到來,5G的發(fā)展將直接帶動(dòng)包括運(yùn)營(yíng)、制造、服務(wù)在內(nèi)的通信行業(yè)整體的快速發(fā)展,進(jìn)而對(duì)GDP增長(zhǎng)產(chǎn)生直接貢獻(xiàn),并通過產(chǎn)業(yè)間的關(guān)聯(lián)效應(yīng)和波及效應(yīng),間接帶動(dòng)國(guó)民經(jīng)濟(jì)各行業(yè)的發(fā)展,創(chuàng)造岀更多的經(jīng)濟(jì)增加值.如圖是某單位結(jié)合近年數(shù)據(jù),對(duì)今后幾年的5G經(jīng)濟(jì)產(chǎn)出所做的預(yù)測(cè).結(jié)合圖,下列說法不正確的是( )
![]()
A.5G的發(fā)展帶動(dòng)今后幾年的總經(jīng)濟(jì)產(chǎn)出逐年增加
B.設(shè)備制造商的經(jīng)濟(jì)產(chǎn)出前期增長(zhǎng)較快,后期放緩
C.設(shè)備制造商在各年的總經(jīng)濟(jì)產(chǎn)出中一直處于領(lǐng)先地位
D.信息服務(wù)商與運(yùn)營(yíng)商的經(jīng)濟(jì)產(chǎn)出的差距有逐步拉大的趨勢(shì)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知在四棱錐
中,底面
是邊長(zhǎng)為
的正方形,
是正三角形,CD平面PAD,E,F,G,O分別是PC,PD,BC,AD 的中點(diǎn).
![]()
(Ⅰ)求證:PO平面
;
(Ⅱ)求平面EFG與平面
所成銳二面角的大小;
(Ⅲ)線段
上是否存在點(diǎn)
,使得直線
與平面
所成角為
,若存在,求線段
的長(zhǎng)度;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在傳染病學(xué)中,通常把從致病刺激物侵入機(jī)體或者對(duì)機(jī)體發(fā)生作用起,到機(jī)體出現(xiàn)反應(yīng)或開始呈現(xiàn)該疾病對(duì)應(yīng)的相關(guān)癥狀時(shí)止的這一階段稱為潛伏期. 一研究團(tuán)隊(duì)統(tǒng)計(jì)了某地區(qū)1000名患者的相關(guān)信息,得到如下表格:
潛伏期(單位:天) |
|
|
|
|
|
|
|
人數(shù) |
|
|
|
|
|
|
|
(1)求這1000名患者的潛伏期的樣本平均數(shù)
(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);
(2)該傳染病的潛伏期受諸多因素的影響,為研究潛伏期與患者年齡的關(guān)系,以潛伏期是否超過6天為標(biāo)準(zhǔn)進(jìn)行分層抽樣,從上述1000名患者中抽取200人,得到如下列聯(lián)表. 請(qǐng)將列聯(lián)表補(bǔ)充完整,并根據(jù)列聯(lián)表判斷是否有
的把握認(rèn)為潛伏期與患者年齡有關(guān);
潛伏期 | 潛伏期 | 總計(jì) | |
50歲以上(含50歲) |
| ||
50歲以下 | 55 | ||
總計(jì) | 200 |
(3)以這1000名患者的潛伏期超過6天的頻率,代替該地區(qū)1名患者潛伏期超過6天發(fā)生的概率,每名患者的潛伏期是否超過6天相互獨(dú)立. 為了深入研究,該研究團(tuán)隊(duì)隨機(jī)調(diào)查了
名患者,其中潛伏期超過6天的人數(shù)最有可能(即概率最大)是多少?
附:
|
|
| |
|
|
|
,其中
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2019年11月份,全國(guó)工業(yè)生產(chǎn)者出廠價(jià)格同比下降
,環(huán)比下降
某企業(yè)在了解市場(chǎng)動(dòng)態(tài)之后,決定根據(jù)市場(chǎng)動(dòng)態(tài)及時(shí)作出相應(yīng)調(diào)整,并結(jié)合企業(yè)自身的情況作出相應(yīng)的出廠價(jià)格,該企業(yè)統(tǒng)計(jì)了2019年1~10月份產(chǎn)品的生產(chǎn)數(shù)量
(單位:萬件)以及銷售總額
(單位:十萬元)之間的關(guān)系如下表:
| 2.08 | 2.12 | 2.19 | 2.28 | 2.36 | 2.48 | 2.59 | 2.68 | 2.80 | 2.87 |
| 4.25 | 4.37 | 4.40 | 4.55 | 4.64 | 4.75 | 4.92 | 5.03 | 5.14 | 5.26 |
(1)計(jì)算
的值;
(2)計(jì)算相關(guān)系數(shù)
,并通過
的大小說明
與
之間的相關(guān)程度;
(3)求
與
的線性回歸方程
,并推測(cè)當(dāng)產(chǎn)量為3.2萬件時(shí)銷售額為多少.(該問中運(yùn)算結(jié)果保留兩位小數(shù))
附:回歸直線方程
中的斜率和截距的最小二乘估計(jì)公式分別為
,
;
相關(guān)系數(shù)
.
參考數(shù)據(jù):
,
,
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓
的焦距為
,且過點(diǎn)
.
(1)求橢圓的方程;
(2)已知
,是否存在k使得點(diǎn)A關(guān)于l的對(duì)稱點(diǎn)B(不同于點(diǎn)A)在橢圓C上?若存在求出此時(shí)直線l的方程,若不存在說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓
經(jīng)過點(diǎn)
,離心率為
.
(1)求橢圓
的方程;
(2)過點(diǎn)
作兩條互相垂直的弦
分別與橢圓
交于點(diǎn)
,求點(diǎn)
到直線
距離的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓
的短軸長(zhǎng)為
,離心率為
.
(1)求橢圓
的標(biāo)準(zhǔn)方程;
(2)直線
平行于直線
,且與橢圓
交于
兩個(gè)不同的點(diǎn),若
為鈍角,求直線
在
軸上的截距
的取值范圍.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com