對于數(shù)列
,如果存在最小的一個常數(shù)
,使得對任意的正整數(shù)恒有
成立,則稱數(shù)列
是周期為
的周期數(shù)列。
設
,周期為
的數(shù)列
前
項的和分別記為
,則
三者的關系式是 。
科目:高中數(shù)學 來源:2012屆上海市崇明中學高三第一學期期中考試試題數(shù)學 題型:解答題
(本題滿分18分,第(1)小題4分,第(2)小題6分,第(3)小題8分)
對于數(shù)列
,如果存在一個正整數(shù)
,使得對任意的
(
)都有
成立,那么就把這樣一類數(shù)列
稱作周期為
的周期數(shù)列,
的最小值稱作數(shù)列
的最小正周期,以下簡稱周期。例如當
時
是周期為
的周期數(shù)列,當
時
是周期為
的周期數(shù)列。
(1)設數(shù)列
滿足
(
),
(
不同時為0),且數(shù)列
是周期為
的周期數(shù)列,求常數(shù)
的值;
(2)設數(shù)列
的前
項和為
,且
.
①若
,試判斷數(shù)列
是否為周期數(shù)列,并說明理由;
②若
,試判斷數(shù)列
是否為周期數(shù)列,并說明理由;
(3)設數(shù)列
滿足
(
),
,
,
,數(shù)列
的前
項和為
,試問是否存在
,使對任意的
都有
成立,若存在,求出
的取值范圍;不存在, 說明理由;
查看答案和解析>>
科目:高中數(shù)學 來源:2011-2012學年湖南省長望瀏寧四市縣區(qū)高三5月聯(lián)考理科數(shù)學試卷(解析版) 題型:填空題
對于數(shù)列
,如果存在一個正整數(shù)
,使得對任意的![]()
都有
成立,那么就把這樣一類數(shù)列
稱作周期為
的周期數(shù)列,
的最小正值稱作數(shù)列
的最小正周期,以下簡稱周期。例如當
時,
是周期為
的周期數(shù)列;當
時,
是周期為
的周期數(shù)列。設數(shù)列
滿足![]()
.
(1)若數(shù)列
是周期為
的周期數(shù)列,則常數(shù)
的值是
;
(2)設數(shù)列
的前
項和為
,若
,則
.
查看答案和解析>>
科目:高中數(shù)學 來源:2011-2012學年江蘇省高三下學期開學質(zhì)量檢測數(shù)學試卷 題型:解答題
(本題滿分16分)
對于數(shù)列
,如果存在一個正整數(shù)
,使得對任意的
(
)都有
成立,那么就把這樣一類數(shù)列
稱作周期為
的周期數(shù)列,
的最小值稱作數(shù)列
的最小正周期,以下簡稱周期.例如當
時
是周期為
的周期數(shù)列,當
時
是周期為
的周期數(shù)列.
(1)設數(shù)列
滿足
(
),
(
不同時為0),求證:數(shù)列
是周期為
的周期數(shù)列,并求數(shù)列
的前2012項的和
;
(2)設數(shù)列
的前
項和為
,且
.
①若
,試判斷數(shù)列
是否為周期數(shù)列,并說明理由;
②若
,試判斷數(shù)列
是否為周期數(shù)列,并說明理由;
(3)設數(shù)列
滿足
(
),
,
,數(shù)列
的前
項和為
,試問是否存在實數(shù)
,使對任意的
都有
成立,若存在,求出
的取值范圍;不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源:2011-2012學年上海市奉賢區(qū)高三期末調(diào)研試卷理科數(shù)學 題型:填空題
(理)對于數(shù)列
,如果存在最小的一個常數(shù)
,使得對任意的正整數(shù)恒有
成立,則稱數(shù)列
是周期為
的周期數(shù)列。設
,數(shù)列前
項的和分別記為
,則
三者的關系式_____________________
(文)已知數(shù)列
的通項公式為
,那么滿足
的正整數(shù)
=________
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com