【題目】如圖,在四棱錐
中:
底面ABCD,底面ABCD為梯形,
,
,且
,BC=1,M為棱PD上的點(diǎn)。
(Ⅰ)若
,求證:CM∥平面PAB;
(Ⅱ)求證:平面
平面PAB;
(Ⅲ)求直線BD與平面PAD所成角的大小.
![]()
【答案】(Ⅰ )見解析(Ⅱ)見解析(Ⅲ)30°
【解析】
(Ⅰ)過點(diǎn)M作MH∥AD,交PA于H,連接BH,BCMH為平行四邊形,CM∥BH,從而得證;
(Ⅱ)要證平面
平面PAB,即證
;
(Ⅲ)取PA的中點(diǎn)為N,連接BN,由(Ⅱ)可知BN⊥平面PAD,即∠BDN為直線BD與平面PAD所成角。
解:(Ⅰ)證明:過點(diǎn)M作MH∥AD,交PA于H,連接BH,
因?yàn)?/span>
,所以
.
又MH∥AD,AD∥BC,所以HM∥BC.
所以BCMH為平行四邊形,所以CM∥BH.
又BH平面PAB,CM平面PAB,
所以CM∥平面PAB.
![]()
(Ⅱ)∵
底面ABCD,AD平面ABCD
∴
,又
,且![]()
∴
,又
平面PAD
∴平面
平面PAB;
(Ⅲ)取PA的中點(diǎn)為N,連接BN,
∵
,∴BN⊥PA,連接DN
又平面
平面PAB,故BN⊥平面![]()
則∠BDN為直線BD與平面PAD所成角
此時(shí),BN=
,BD=![]()
∴sin∠BDN=
,即∠BDN=30°
∴求直線BD與平面PAD所成角的大小30°.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某地?cái)M建造一座體育館,其設(shè)計(jì)方案?jìng)?cè)面的外輪廓線如圖所示:曲線
是以點(diǎn)
為圓心的圓的一部分,其中![]()
,
是圓的切線,且
,曲線
是拋物線![]()
的一部分,
,且
恰好等于圓
的半徑.
![]()
(1)若
米,
米,求
與
的值;
(2)若體育館側(cè)面的最大寬度
不超過75米,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
,
,在曲線
與直線
的交點(diǎn)中,若相鄰交點(diǎn)距離的最小值為
,則
的最小正周期為( )
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司為確定下一年度投入某種產(chǎn)品的宣傳費(fèi),需了解年宣傳費(fèi)對(duì)年銷售量(單位:t)的影響.該公司對(duì)近5年的年宣傳費(fèi)和年銷售量數(shù)據(jù)進(jìn)行了研究,發(fā)現(xiàn)年宣傳費(fèi)x(萬元)和年銷售量y(單位:t)具有線性相關(guān)關(guān)系,并對(duì)數(shù)據(jù)作了初步處理,得到下面的一些統(tǒng)計(jì)量的值.
![]()
(1)根據(jù)表中數(shù)據(jù)建立年銷售量y關(guān)于年宣傳費(fèi)x的回歸方程;
(2)已知這種產(chǎn)品的年利潤(rùn)z與x,y的關(guān)系為
,根據(jù)(1)中的結(jié)果回答下列問題:
①當(dāng)年宣傳費(fèi)為10萬元時(shí),年銷售量及年利潤(rùn)的預(yù)報(bào)值是多少?
②估算該公司應(yīng)該投入多少宣傳費(fèi),才能使得年利潤(rùn)與年宣傳費(fèi)的比值最大.
附:回歸方程
中的斜率和截距的最小二乘估計(jì)公式分別為
![]()
參考數(shù)據(jù):
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P-ABCD中,PD⊥平面ABCD,底面ABCD是菱形,∠BAD=60°,AB=2,PD=
,O為AC與BD的交點(diǎn),E為棱PB上一點(diǎn).
![]()
(1)證明:平面EAC⊥平面PBD;
(2)若PD∥平面EAC,求三棱錐P-EAD的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
,其中
.
(Ⅰ)當(dāng)a=1時(shí),求函數(shù)
的單調(diào)區(qū)間:
(Ⅱ)求函數(shù)
的極值;
(Ⅲ)若函數(shù)
有兩個(gè)不同的零點(diǎn),求a的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列
滿足
,
,其前n項(xiàng)和
,則下列說法正確的個(gè)數(shù)是( )
①數(shù)列
是等差數(shù)列;②
;③
.
A.0B.1C.2D.3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
.
(Ⅰ)求函數(shù)
在
處的切線方程;
(Ⅱ)若對(duì)任意的
,
恒成立,求
的取值范圍;
(Ⅲ)當(dāng)
時(shí),設(shè)函數(shù)
.證明:對(duì)于任意的
,函數(shù)
有且只有一個(gè)零點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱錐
中,
,
,
,
,
分別是
,
的中點(diǎn),
在
上且
.
![]()
(I)求證:
;
(II)求直線
與平面
所成角的正弦值;
(III)在線段
上是否存在點(diǎn)
,使二面角
的大小為
?若存在,求出
的長(zhǎng);若不存在,請(qǐng)說明理由.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com