已知函數(shù)![]()
(1)討論函數(shù)
的單調(diào)區(qū)間;
(2)已知
對(duì)定義域內(nèi)的任意
恒成立,求實(shí)數(shù)
的取值范圍.
(1)①
;②當(dāng)
減區(qū)間是
,增區(qū)間是
③當(dāng)
④當(dāng)
減區(qū)間是
,增區(qū)間是
(2)![]()
解析試題分析:解:(1)
令
①當(dāng)![]()
![]()
②當(dāng)
減區(qū)間是
,增區(qū)間是
③當(dāng)
④當(dāng)
減區(qū)間是
,增區(qū)間是
綜上所述(略)
(2)由于
,若
此時(shí),
對(duì)定義域內(nèi)的一切實(shí)數(shù)不是恒成立的; ![]()
![]()
對(duì)定義域內(nèi)的一切實(shí)數(shù)恒成立等價(jià)于![]()
考點(diǎn):導(dǎo)數(shù)的應(yīng)用
點(diǎn)評(píng):導(dǎo)數(shù)常應(yīng)用于求曲線的切線方程、求函數(shù)的最值與單調(diào)區(qū)間、證明不等式和解不等式中參數(shù)的取值范圍等。
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
,![]()
.
(Ⅰ)若
,求函數(shù)
在區(qū)間
上的最值;
(Ⅱ)若
恒成立,求
的取值范圍.
注:
是自然對(duì)數(shù)的底數(shù)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知定義在
上的函數(shù)
(其中
).
(Ⅰ)解關(guān)于
的不等式
;
(Ⅱ)若不等式
對(duì)任意
恒成立,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知
(1)求
的最小值
(2)由(1)推出
的最小值C
(不必寫出推理過程,只要求寫出結(jié)果)
(3)在(2)的條件下,已知函數(shù)
若對(duì)于任意的
,恒有
成立,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù)
.
(1) 當(dāng)
時(shí),求函數(shù)
的單調(diào)區(qū)間;
(2) 當(dāng)
時(shí),求函數(shù)
在
上的最小值
和最大值
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù)f(x)=x3-3ax2+3bx的圖像與直線12x+y-1=0相切于點(diǎn)(1,-11)。
(1)求a,b的值;
(2)討論函數(shù)f(x)的單調(diào)性。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)![]()
求
及
的單調(diào)區(qū)間
設(shè)
,
兩點(diǎn)連線的斜率為
,問是否存在常數(shù)
,且
,當(dāng)
時(shí)有
,當(dāng)
時(shí)有
;若存在,求出
,并證明之,若不存在說明理由.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com