【題目】如圖: PA⊥平面ABC,∠ACB=90°且PA=AC=BC=
,則異面直線PB與AC所成角的正切值等于________.
![]()
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=ax2(a>0),點A(5,0),P(1,a),若存在點Q(k,f(k))(k>0),要使
=λ(
+
)(λ為常數(shù)),則k的取值范圍為 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知在直三棱柱ABC﹣A1B1C1中,∠BAC=120°,AB=AC=1,AA1=2,若棱AA1在正視圖的投影面α內(nèi),且AB與投影面α所成角為θ(30°≤θ≤60°),設(shè)正視圖的面積為m,側(cè)視圖的面積為n,當θ變化時,mn的最大值是( ) ![]()
A.2 ![]()
B.4
C.3 ![]()
D.4 ![]()
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】根據(jù)調(diào)查,某學校開設(shè)了“街舞”、“圍棋”、“武術(shù)”三個社團,三個社團參加的人數(shù)如下表所示:
為調(diào)查社團開展情況,學校社團管理部采用分層抽樣的方法從中抽取一個容量為n的樣本,已知從“街舞”社團抽取的同學8人
社團 | 街舞 | 圍棋 | 武術(shù) |
人數(shù) | 320 | 240 | 200 |
(Ⅰ)求n的值和從“圍棋”社團抽取的同學的人數(shù);
(Ⅱ)若從“圍棋”社團抽取的同學中選出2人擔任該社團活動監(jiān)督的職務(wù),已知“圍棋”社團被抽取的同學中有2名女生,求至少有1名女同學被選為監(jiān)督職務(wù)的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知集合M={x|9x﹣43x+1+27=0},N={x|log2(x+1)+log2x=log26},則M、N的關(guān)系是( )
A.MN
B.NM
C.M=N
D.不確定
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐P-ABCD中,側(cè)面PAD⊥底面ABCD,側(cè)棱
,底面ABCD為直角梯形,其中
,O為AD中點.
![]()
(1)求證:PO⊥平面ABCD;
(2)求直線BD與平面PAB所成角的正弦值;
(3)線段AD上是否存在點
,使得它到平面PCD的距離為
.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列說法正確的是( ).
A.
,“
”是“
”的必要不充分條件
B. “
且
為真命題”是“
或
為真命題” 的必要不充分條件
C. 命題“
,使得
”的否定是:“
”
D. 命題
:“
”,則
是真命題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在數(shù)列{
}中,已知
,
,
,則
等于( )
A.
B.
C.
D. ![]()
【答案】B
【解析】
將數(shù)列的等式關(guān)系兩邊取倒數(shù)
是公差為
的等差數(shù)列,再根據(jù)等差數(shù)列求和公式得到數(shù)列通項
,再取倒數(shù)即可得到數(shù)列{
}的通項.
將等式
兩邊取倒數(shù)得到
,
是公差為
的等差數(shù)列,
=
,根據(jù)等差數(shù)列的通項公式的求法得到
,故
=
.
故答案為:B.
【點睛】
這個題目考查的是數(shù)列通項公式的求法,數(shù)列通項的求法中有常見的已知
和
的關(guān)系,求
表達式,一般是寫出
做差得通項,但是這種方法需要檢驗n=1時通項公式是否適用;還有構(gòu)造新數(shù)列的方法,取倒數(shù),取對數(shù)的方法等等.
【題型】單選題
【結(jié)束】
9
【題目】在如圖所示的銳角三角形空地中, 欲建一個面積不小于300m2的內(nèi)接矩形花園(陰影部分), 則其邊長x(單位m)的取值范圍是 ( )
![]()
(A) [15,20](B) [12,25] (C) [10,30](D) [20,30]
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知有限集
,如果A中元素
,滿足
,就稱A為
元“創(chuàng)新集”;
(1)若
,試寫出一個二元“創(chuàng)新集”A;
(2)若
,且
是二元“創(chuàng)新集”,求
的取值范圍;
(3)若
是正整數(shù),求出所有的“創(chuàng)新集”
;
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com