(本題滿分14分)
已知橢圓
過點
,且離心率為
.
(1)求橢圓
的方程;
(2)
為橢圓
的左右頂點,點
是橢圓
上異于
的動點,直線
分別交直線
于
兩點.
證明:以線段
為直徑的圓恒過
軸上的定點.
(1)
; (2)
【解析】
試題分析:(1)由題意可知,
, …………1分 而
,……………2分
且
. …………3分 解得
,……………4分
所以,橢圓的方程為
. ……………5分
(2)由題可得
.設
, ……………6分
直線
的方程為
, ……………7分
令
,則
,即
; ……………8分
直線
的方程為
, ……………9分
令
,則
,即
; ……………10分
證法1:設點
在以線段
為直徑的圓上,則
,
即
, …………11分
,而
,即
,
,
或
. ……………13分
故以線段
為直徑的圓必過
軸上的定點
、
. ……………14分
證法2:以線段
為直徑的圓為![]()
即
………11分
令
,得
, ……………12分
而
,即
,
,
或
……………13分
故以線段
為直徑的圓必過
軸上的定點
、
. ……………14分
證法3:令
,則
,令
,得
,同理得
.
∴以
為直徑的圓為
,令
解得
∴圓過
……………11分
由前,對任意點
,可得
,
∴
∴
在以
為直徑的圓上.
同理,可知
也在
為直徑的圓上. ……………13分
∴故以線段
為直徑的圓必過
軸上的定點
、
. …………………14分
考點:橢圓的標準方程;橢圓的簡單性質;直線與橢圓的綜合應用;直線方程的點斜式。
點評:此題的第二問給出了三種方法來解答,我們要熟練掌握每一種方法。這是作圓錐曲線有關問題的基礎。屬于中檔題。
科目:高中數學 來源: 題型:
| π |
| 3 |
|
查看答案和解析>>
科目:高中數學 來源: 題型:
(本題滿分14分)如圖,四邊形ABCD為矩形,AD⊥平面ABE,AE=EB=BC=2,
為
上的點,且BF⊥平面ACE.
(1)求證:AE⊥BE;(2)求三棱錐D-AEC的體積;(3)設M在線段AB上,且滿足AM=2MB,試在線段CE上確定一點N,使得MN∥平面DAE.
查看答案和解析>>
科目:高中數學 來源:2011-2012學年江蘇省高三上學期期中考試數學 題型:解答題
(本題滿分14分)已知集合A={x|x2-2x-3≤0,x∈R},B={x|x2-2mx+m2-4≤0,x∈R,m∈R}
(Ⅰ)若A
B=[0,3],求實數m的值
(Ⅱ)若A
CRB,求實數m的取值范圍
查看答案和解析>>
科目:高中數學 來源:2010-2011學年福建省高三上學期第三次月考理科數學卷 題型:解答題
(本題滿分14分)
已知點
是⊙
:
上的任意一點,過
作
垂直
軸于
,動點
滿足
。
(1)求動點
的軌跡方程;
(2)已知點
,在動點
的軌跡上是否存在兩個不重合的兩點
、
,使
(O是坐標原點),若存在,求出直線
的方程,若不存在,請說明理由。
查看答案和解析>>
科目:高中數學 來源:2014屆江西省高一第二學期入學考試數學 題型:解答題
(本題滿分14分)已知函數
.
(1)求函數
的定義域;
(2)判斷
的奇偶性;
(3)方程
是否有根?如果有根
,請求出一個長度為
的區間
,使![]()
![]()
;如果沒有,請說明理由?(注:區間的長度為
).
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com