【題目】設(shè)函數(shù)
的定義域?yàn)?/span>
,若滿足條件:存在
,使
在
上的值域?yàn)?/span>
,則稱
為“倍縮函數(shù)”.若函數(shù)
為“倍縮函數(shù)”,則實(shí)數(shù)
的取值范圍是
A. (﹣∞,ln2﹣1) B. (﹣∞,ln2﹣1]
C. (1﹣ln2,+∞) D. [1﹣ln2,+∞)
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓
:
過(guò)點(diǎn)
,且離心率為
.過(guò)點(diǎn)
的直線
與橢圓
交于
,
兩點(diǎn).
(Ⅰ)求橢圓
的標(biāo)準(zhǔn)方程;
(Ⅱ)若點(diǎn)
為橢圓
的右頂點(diǎn),探究:
是否為定值,若是,求出該定值,若不是,請(qǐng)說(shuō)明理由.(其中,
,
分別是直線
、
的斜率)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系
中,圓
,直線
.
(1)以原點(diǎn)
為極點(diǎn),
軸正半軸為極軸建立極坐標(biāo)系,求圓
和直線
的交點(diǎn)的極坐標(biāo);
(2)若點(diǎn)
為圓
和直線
交點(diǎn)的中點(diǎn),且直線
的參數(shù)方程為
(
為參數(shù)),求
,
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直三棱柱
中,
為正三角形,點(diǎn)
在棱
上,且
,點(diǎn)
,
分別為棱
,
的中點(diǎn).
![]()
(1)證明:
平面
;
(2)若
,求直線
與平面
所成的角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
.
(1)求證:函數(shù)
有唯一零點(diǎn);
(2)若對(duì)任意
,
恒成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)
,曲線
在點(diǎn)
處的切線與直線
垂直.
(1)求
的值;
(2)若對(duì)于任意的
恒成立,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)
,曲線
在點(diǎn)
處的切線與直線
垂直.
(1)求
的值;
(2)若對(duì)于任意的
恒成立,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓
的離心率為
,點(diǎn)
在橢圓
上.
(1)求橢圓
的方程;
(2)經(jīng)過(guò)橢圓
的右焦點(diǎn)
的直線
與橢圓
交于
、
兩點(diǎn),
、
分別為橢圓
的左、右頂點(diǎn),記
與
的面積分別為
和
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線
與橢圓
相交于
兩點(diǎn),與
軸,
軸分別相交于點(diǎn)
和點(diǎn)
,且
,點(diǎn)
是點(diǎn)
關(guān)于
軸的對(duì)稱點(diǎn),
的延長(zhǎng)線交橢圓于點(diǎn)
,過(guò)點(diǎn)
分別做
軸的垂線,垂足分別為
.
(1) 若橢圓
的左、右焦點(diǎn)與其短軸的一個(gè)端點(diǎn)是正三角形的三個(gè)頂點(diǎn),點(diǎn)
在橢圓
上,求橢圓
的方程;
(2)當(dāng)
時(shí),若點(diǎn)
平分線段
,求橢圓
的離心率.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com