已知函數(shù)
,
(I)當(dāng)
時(shí),求曲線
在點(diǎn)
處的切線方程;
(II)在區(qū)間
內(nèi)至少存在一個(gè)實(shí)數(shù)
,使得
成立,求實(shí)數(shù)
的取值范圍.
(1)
(2)![]()
解析試題分析:解:(I)當(dāng)
時(shí),
,
, 2分
曲線
在點(diǎn)
處的切線斜率![]()
,
所以曲線
在點(diǎn)
處的切線方程為
. 6分
(II)解1:![]()
![]()
當(dāng)
,即
時(shí),
,
在
上為增函數(shù),
故![]()
![]()
,所以![]()
,
,這與
矛盾 8分
當(dāng)
,即
時(shí),
若
,
;
若
,
,
所以
時(shí),
取最小值,
因此有![]()
,即![]()
,解得
,這與
矛盾; 12分
當(dāng)
即
時(shí),
,
在
上為減函數(shù),所以![]()
![]()
,所以
,解得
,這符合
.
綜上所述,
的取值范圍為
. 14分
解2:有已知得:
, 8分
設(shè)
,
, 10分
,
,所以
在
上是減函數(shù). 12分
,
故
的取值范圍為
&
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)
.
(1)若p=2,求曲線
處的切線方程;
(2)若函數(shù)在其定義域內(nèi)是增函數(shù),求正實(shí)數(shù)p的取值范圍;
(3)設(shè)函數(shù)
,若在[1,e]上至少存在一點(diǎn)
,使得
成立,求實(shí)
數(shù)p的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)
的圖像在點(diǎn)
處的切線方程為
.
(Ⅰ)求實(shí)數(shù)
的值;
(Ⅱ)設(shè)
是[
)上的增函數(shù), 求實(shí)數(shù)
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知
,設(shè)函數(shù)![]()
(1)若![]()
,求函數(shù)
在
上的最小值
(2)判斷函數(shù)
的單調(diào)性
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本題滿分12分) 設(shè)函數(shù)
.
(Ⅰ)判斷
能否為函數(shù)
的極值點(diǎn),并說(shuō)明理由;
(Ⅱ)若存在
,使得定義在
上的函數(shù)
在
處取得最大值,求實(shí)數(shù)
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)
,![]()
(1)求函數(shù)
在
上的最小值;
(2)若函數(shù)
與
的圖像恰有一個(gè)公共點(diǎn),求實(shí)數(shù)a的值;
(3)若函數(shù)
有兩個(gè)不同的極值點(diǎn)
,且
,求實(shí)數(shù)a的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知
,
,
(1)若對(duì)
內(nèi)的一切實(shí)數(shù)
,不等式
恒成立,求實(shí)數(shù)
的取值范圍;
(2)當(dāng)
時(shí),求最大的正整數(shù)
,使得對(duì)
(
是自然對(duì)數(shù)的底數(shù))內(nèi)的任意
個(gè)實(shí)數(shù)
都有
成立;
(3)求證:![]()
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)f(x)=x3+x-16,
(1)求曲線y=f(x)在點(diǎn)(2,-6)處的切線的方程;
(2)直線l為曲線y=f(x)的切線,且經(jīng)過(guò)原點(diǎn),求直線l的方程及切點(diǎn)坐標(biāo);
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分12分)
已知函數(shù)
,
,設(shè)
.
(Ⅰ)求函數(shù)
的單調(diào)區(qū)間;
(Ⅱ)若以函數(shù)
圖像上任意一點(diǎn)
為切點(diǎn)的切線的斜率
恒成立,求實(shí)數(shù)
的最小值;
(Ⅲ)是否存在實(shí)數(shù)m,使得函數(shù)
的圖像與函數(shù)
的圖像恰有四個(gè)不同的交點(diǎn)?若存在,求出實(shí)數(shù)m的取值范圍;若不存在,說(shuō)明理由。
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com