某公司經銷某種產品,每件產品的成本為6元,預計當每件產品的售價為
元(
)時,一年的銷售量為
萬件。
(1)求公司一年的利潤y(萬元)與每件產品的售價x的函數關系;
(2)當每件產品的售價為多少時,公司的一年的利潤y最大,求出y最大值.
科目:高中數學 來源: 題型:解答題
已知函數f(x)=aln x-ax-3(a∈R).
(1)若a=-1,求函數f(x)的單調區間;
(2)若函數y=f(x)的圖象在點(2,f(2))處的切線的傾斜角為45°,對于任意的t∈[1,2],函數g(x)=x3+x2
(f′(x)是f(x)的導數)在區間(t,3)上總不是單調函數,求m的取值范圍;
(3)求證:
×…×
<
(n≥2,n∈N*).
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知函數
,
,其中m∈R.
(1)若0<m≤2,試判斷函數f (x)=f1 (x)+f2 (x)
的單調性,并證明你的結論;
(2)設函數
若對任意大于等于2的實數x1,總存在唯一的小于2的實數x2,使得g (x1) =" g" (x2) 成立,試確定實數m的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知函數![]()
(1)若函數
的圖象切x軸于點(2,0),求a、b的值;
(2)設函數
的圖象上任意一點的切線斜率為k,試求
的充要條件;
(3)若函數
的圖象上任意不同的兩點的連線的斜率小于l,求證
.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
一個如圖所示的不規則形鐵片,其缺口邊界是口寬4分米,深2分米(頂點至兩端點
所在直線的距離)的拋物線形的一部分,現要將其缺口邊界裁剪為等腰梯形.
(1)若保持其缺口寬度不變,求裁剪后梯形缺口面積的最小值;
(2)若保持其缺口深度不變,求裁剪后梯形缺口面積的最小值.![]()
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
根據統計資料,某工藝品廠的日產量最多不超過20件,每日產品廢品率
與日產量
(件)之間近似地滿足關系式
(日產品廢品率![]()
).已知每生產一件正品可贏利2千元,而生產一件廢品則虧損1千元.(該車間的日利潤
日正品贏利額
日廢品虧損額)
(1)將該車間日利潤
(千元)表示為日產量
(件)的函數;
(2)當該車間的日產量為多少件時,日利潤最大?最大日利潤是幾千元?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com