(文科)(本小題滿分12分)長方體
中,
,
,
是底面對角線的交點(diǎn).![]()
(Ⅰ) 求證:
平面
;
(Ⅱ) 求證:
平面
;
(Ⅲ) 求三棱錐
的體積。
(Ⅰ)由
,
且
在平面
外.得
平面;
(Ⅱ)連結(jié)
得到
平面
;
又∵
在
上,可得
;
計算
;
同理:
∵
中,![]()
推出
平面
。
(Ⅲ)![]()
。
解析試題分析:(Ⅰ) 證明:依題意:
,
且
在平面
外.…2分![]()
∴
平面
3分
(Ⅱ) 證明:連結(jié)
∵
![]()
∴
平面
4分
又∵
在
上,∴
在平面
上
∴
5分
∵
∴
∴
∴
中,
6分
同理:
∵
中,![]()
∴
7分,∴
平面
8分
(Ⅲ)解:∵
平面
∴所求體積![]()
12分
考點(diǎn):本題主要考查立體幾何中的平行關(guān)系、垂直關(guān)系,幾何體體積的計算。
點(diǎn)評:典型題,立體幾何題,是高考必考內(nèi)容,往往涉及垂直關(guān)系、平行關(guān)系、角、距離、體積的計算。在計算問題中,有“幾何法”和“向量法”。利用幾何法,要遵循“一作、二證、三計算”的步驟。利用向量可簡化證明過程。本題難度不大。
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖所示,在四面體
中,
,
,
兩兩互相垂直,且
.![]()
(1)求證:平面
平面
;
(2)求二面角
的大。
(3)若直線
與平面
所成的角為
,求線段
的長度.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,
為圓
的直徑,點(diǎn)
、
在圓
上,
,矩形
所在的平面與圓
所在的平面互相垂直.已知
,
.![]()
(Ⅰ)求證:平面
平面
;
(Ⅱ)求直線
與平面
所成角的大;
(Ⅲ)當(dāng)
的長為何值時,平面
與平面
所成的銳二面角的大小為
?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,
是以
為直徑的半圓上異于
、
的點(diǎn),矩形
所在的平面垂直于該半圓所在的平面,且
.![]()
(Ⅰ)求證:
;
(Ⅱ)設(shè)平面
與半圓弧的另一個交點(diǎn)為
.
①試證:
;
②若
,求三棱錐
的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,棱柱ABCD—
的底面
為菱 形 ,AC∩BD=O側(cè)棱
⊥BD,點(diǎn)F為
的中點(diǎn).![]()
(Ⅰ)證明:
平面
;
(Ⅱ)證明:平面
平面
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在四棱錐
中,平面PAD⊥平面ABCD,AB=AD,∠BAD=60°,E、F分別是AP、AD的中點(diǎn).![]()
求證:(1)直線EF∥平面PCD;
(2)平面BEF⊥平面PAD
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com