【題目】設(shè)函數(shù)f(x)=
sin
,若存在f(x)的極值點(diǎn)x0滿足x02+[f(x0)]2<m2 , 則m的取值范圍是( )
A.(﹣∞,﹣6)∪(6,+∞)
B.(﹣∞,﹣4)∪(4,+∞)
C.(﹣∞,﹣2)∪(2,+∞)
D.(﹣∞,﹣1)∪(1,+∞)
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】①設(shè)三個(gè)正實(shí)數(shù)a , b , c , 滿足
,求證:a , b , c一定是某一個(gè)三角形的三條邊的長;
②設(shè)n個(gè)正實(shí)數(shù) a1,a2,...an 滿足不等式
(其中
),求證: a1,a2,...an 中任何三個(gè)數(shù)都是某一個(gè)三角形的三條邊的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=2sinxcosx+2
cos2x﹣ ![]()
(1)求函數(shù)f(x)的最小正周期和單調(diào)減區(qū)間;
(2)已知△ABC的三個(gè)內(nèi)角A,B,C的對邊分別為a,b,c,其中a=7,若銳角A滿足f(
﹣
)=
,且sinB+sinC=
,求bc的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
,曲線
在點(diǎn)
處的切線與直線
垂直(其中
為自然對數(shù)的底數(shù)).
(I)求
的解析式及單調(diào)遞減區(qū)間;
(II)若存在
,使函數(shù)
成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】等差數(shù)列{an}的前n項(xiàng)和為Sn,已知a1=10,a2為整數(shù),且Sn≤S4.
(1)求{an}的通項(xiàng)公式;
(2)設(shè)bn=
,求數(shù)列{bn}的前n項(xiàng)和Tn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓
:
(
)的左焦點(diǎn)為
,左準(zhǔn)線方程為
.
(1)求橢圓
的標(biāo)準(zhǔn)方程;
(2)已知直線
交橢圓
于
,
兩點(diǎn).
①若直線
經(jīng)過橢圓
的左焦點(diǎn)
,交
軸于點(diǎn)
,且滿足
,
.求證:
為定值;
②若
(
為原點(diǎn)),求
面積的取值范圍.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知
=(sinx,sin(x﹣
)),
=(sinx,cos(x+
)),f(x)=
.
(1)求f(x)的解析式及周期;
(2)求f(x)在x∈[﹣
,
]上的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,AD∥BC,AB⊥AD,AB⊥PA,BC=2AB=2AD=4BE,平面PAB⊥平面ABCD, ![]()
(Ⅰ)求證:平面PED⊥平面PAC;
(Ⅱ)若直線PE與平面PAC所成的角的正弦值為
,求二面角A﹣PC﹣D的平面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在數(shù)列{an}中,a1=1,an+1=2an+2n.
(1)設(shè)bn=
.證明:數(shù)列{bn}是等差數(shù)列;
(2)求數(shù)列{an}的前n項(xiàng)和.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com