集合A=(―∞,―2]∪[3,+∞),關(guān)于x的不等式(x-2a)·(x+a)>0的解集為B(其中a<0).
(1)求集合B;
(2)設(shè)p:x∈A,q:x∈B,且Øp是Øq的充分不必要條件,求a的取值范圍。
(1)(-∞,2a)∪(-a,+∞);(2)(―∞,-3].
解析試題分析:(1)解一元二次不等式(x-2a)·(x+a)>0,可求出B=(-∞,2a)∪(-a,+∞);
(2)依據(jù)題意有
p:x=∈(-2,3),
q∈[2a,―a],可知(-2,3)
[2a,―a]即
,解得a≤-3
試題解析:解:(1)∵a<0,2a<-a,∴B={x|x<2a或x>-a}=(-∞,2a)∪(-a,+∞)…5分
(2)∵
p:CRA=(-2,3),
q:CRB=[2a,―a]
由
p是
q的充分不必要條件知 CRA
CRB 8分
∴![]()
a≤-3, 所以a的取值范圍為(―∞,-3] 12分
考點(diǎn):1.一元二次不等式的解法;2.必要條件、充分條件與充要條件的判斷;
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知命題
,命題
。
(1)若p是q的充分條件,求實(shí)數(shù)m的取值范圍;
(2)若m=5,“
”為真命題,“
”為假命題,求實(shí)數(shù)x的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知命題
:方程
有兩個(gè)不相等的負(fù)實(shí)根,命題
:![]()
恒成立;若
或
為真,
且
為假,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)命題p:(4x-3)2≤1;命題q:x2-(2a+1)x+a(a+1)≤0,若
是
的必要不充分條件,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知命題
:復(fù)數(shù)
,復(fù)數(shù)
,
是虛數(shù);命題
:關(guān)于
的方程
的兩根之差的絕對(duì)值小于
;若
為真命題,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知命題
方程
在
上有解,命題
函數(shù)![]()
的值域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/89/1/1pfi13.png" style="vertical-align:middle;" />,若命題“
或
”是假命題,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
下列命題中_________為真命題.
①“A∩B=A”成立的必要條件是“A
B”; w ②“若x2+y2=0,則x,y全為0”的否命題;
③“全等三角形是相似三角形”的逆命題; ④“圓內(nèi)接四邊形對(duì)角互補(bǔ)”的逆否命題.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)命題p:函數(shù)f(x)=lg(ax2-4x+a)的定義域?yàn)镽;命題q:不等式2x2+x>2+ax,在x∈(-∞,-1)上恒成立,如果命題“p∨q”為真命題,命題“p∧q”為假命題,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com