【題目】利用兩種循環寫出1+2+3+…+100的算法,并畫出各自的流程圖
【答案】【解答】
解:直到型循環算法:
第一步:S←0;
第二步:I←1;
第三步:S←S+I;
第四步:I←I+1;
第五步:如果I不大于100,轉第三步;否則,輸出S.
相應的流程圖如圖甲所示.![]()
當型循環算法如下:
S1令i←1,S←0
S2若i≤100成立,則執行S3;否則,輸出S,結束算法
S3S←S+i
S4i←i+1,返回S2
相應的流程圖如圖乙所示.
【解析】本題主要考查了設計程序框圖解決實際問題,解決問題的關鍵是由已知中程序的功能為用循環結構計算1+2+3+…+100的值,為累加運算,且要反復累加100次,可令循環變量的初值為1,終值為100,步長為1,由此利用直到型循環算法和當型循環算法,確定循環前和循環體中各語句,得到相應的程序框圖.
科目:高中數學 來源: 題型:
【題目】已知△ABC的頂點A(0,1),AB邊上的中線CD所在的直線方程為2x﹣2y﹣1=0,AC邊上的高BH所在直線的方程為y=0.
(1)求△ABC的頂點B、C的坐標;
(2)若圓M經過不同的三點A、B、P(m,0),且斜率為1的直線與圓M相切于點P,求圓M的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設f(x)=
+5x+6在區間[1,3]上為單調函數,則實數a的取值范圍是( )
A.[﹣
,+∞)
B.(﹣∞,﹣3]
C.(﹣∞,﹣3]∪[﹣
,+∞)
D.[﹣
,
]
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】函數g(x)=log2
(x>0),關于方程|g(x)|2+m|g(x)|+2m+3=0有三個不同實數解,則實數m的取值范圍為( )
A.(﹣∞,4﹣2
)∪(4
,+∞)
B.(4﹣2
,4
)
C.(﹣
,﹣
)
D.(﹣
,﹣
]
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】請閱讀下列材料:若兩個正實數a1 , a2滿足a12+a22=1,那么a1+a2≤
.
證明:構造函數f(x)=(x-a1)2+(x-a2)2=2x2-2(a1+a2)x+1,因為對一切實數x , 恒有f(x)≥0,所以Δ≤0,從而得4(a1+a2)2-8≤0,所以a1+a2≤
.
根據上述證明方法,若n個正實數滿足a12+a22+…+an2=1時,你能得到的結論為 .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下列各組函數中,表示同一個函數的是( )
A.f(x)=2x+1與g(x)= ![]()
B.y=x﹣1與y= ![]()
C.y=
與y=x+3
D.f(x)=1與g(x)=1
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數y=f(x)對任意x∈R,恒有(f(x)﹣sinx)(f(x)﹣cosx)=0成立,則下列關于函數 y=f(x)的說法正確的是( )
A.最小正周期是2π
B.值域是[﹣1,1]
C.是奇函數或是偶函數
D.以上都不對
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com