【題目】已知矩形
中,
,
分別在
上,且
,沿
將四邊形
折成四邊形
,使點(diǎn)
在平面
上的射影
在直線
上,且
.
![]()
(1)求證:
平面
;
(2)求
到平面
的距離.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工廠經(jīng)過市場調(diào)查,甲產(chǎn)品的日銷售量
(單位:噸)與銷售價格
(單位:萬元/噸)滿足關(guān)系式
(其中
為常數(shù)),已知銷售價格為
萬元/噸時,每天可售出該產(chǎn)品
噸.
(1)求
的值;
(2)若該產(chǎn)品的成本價格為
萬元/噸,當(dāng)銷售價格為多少時,該產(chǎn)品每天的利潤最大?并求出最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
,設(shè)
,
,其中
,
.
(1)若函數(shù)
在區(qū)間
上單調(diào)遞增,求實(shí)數(shù)
的取值范圍;
(2)記
,求證:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
.
(1)若方程
有兩個小于2的不等實(shí)根,求實(shí)數(shù)a的取值范圍;
(2)若不等式
對任意
恒成立,求實(shí)數(shù)a的取值范圍;
(3)若函數(shù)
在[0,2]上的最大值為4,求實(shí)數(shù)a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
其中
是實(shí)數(shù).設(shè)
為該函數(shù)圖像上的兩點(diǎn),橫坐標(biāo)分別為
,且
.
(1求
的單調(diào)區(qū)間和極值;
(2)若
,函數(shù)
的圖像在點(diǎn)
處的切線互相垂直,求
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)
、
分別為橢圓
:![]()
的左、右兩個焦點(diǎn).
(Ⅰ)若橢圓
上的點(diǎn)
到
、
兩點(diǎn)的距離之和等于6,寫出橢圓
的方程和焦點(diǎn)坐標(biāo);
(Ⅱ)設(shè)點(diǎn)
是(1)中所得橢圓上的動點(diǎn),求線段
的中點(diǎn)M的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓
的左、右焦點(diǎn)分別為
、
,橢圓上的點(diǎn)
滿足
,且
的面積為
.
(1)求橢圓
的方程;
(2)設(shè)橢圓
的左、右頂點(diǎn)分別為
、
,過點(diǎn)
的動直線
與橢圓
相交于
、
兩點(diǎn),直線
與直線
的交點(diǎn)為
,證明:點(diǎn)
總在直線
上.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】正方體
的棱長為1,
分別是棱
,
的中點(diǎn),過直線
的平面分別與棱
、
交于
,設(shè)
,
,給出以下四個命題:
①四邊形
為平行四邊形;
②若四邊形
面積
,
,則
有最小值;
③若四棱錐
的體積![]()
,
,則
為常函數(shù);
④若多面體
的體積
,
,則
為單調(diào)函數(shù).
其中假命題為( )
A. ① ③ B. ② C. ③④ D. ④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形
是矩形,
,
是
的中點(diǎn),
與
交于點(diǎn)
,
平面
.
![]()
(Ⅰ)求證:
面
;
(Ⅱ)若
,求直線
與平面
所成角的正弦值.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com