【題目】已知數(shù)列{an}的前n項和為Sn , 且
,則Sn取最小值時,n的值是( )
A.3
B.4
C.5
D.6
【答案】B
【解析】解:在數(shù)列{an}中,由an+1=an+3,得an+1﹣an=3(n∈N*), ∴數(shù)列{an}是公差為3的等差數(shù)列.
又a1=﹣10,∴數(shù)列{an}是公差為3的遞增等差數(shù)列.
由an=a1+(n﹣1)d=﹣10+3(n﹣1)=3n﹣13≥0,解得
.
∵n∈N* , ∴數(shù)列{an}中從第五項開始為正值.
∴當n=4時,Sn取最小值.
故選:B.
【考點精析】本題主要考查了數(shù)列的通項公式的相關(guān)知識點,需要掌握如果數(shù)列an的第n項與n之間的關(guān)系可以用一個公式表示,那么這個公式就叫這個數(shù)列的通項公式才能正確解答此題.
科目:高中數(shù)學 來源: 題型:
【題目】如圖示:半圓O的直徑為2,A為直徑延長線上的一點,OA=2,B為半圓上任意一
點,以AB為一邊作等邊三角形ABC.則四邊形OACB的面積最大值是 . ![]()
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)數(shù)列{an}的前n項和為Sn=n2 , {bn}為等比數(shù)列,且a1=b1 , b2(a2﹣a1)=b1 .
(1)求數(shù)列{an},{bn}的通項公式.
(2)設(shè)cn=anbn , 求數(shù)列{cn}的前n項和Tn .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】脫貧是政府關(guān)注民生的重要任務(wù),了解居民的實際收入狀況就顯得尤為重要.現(xiàn)從某地區(qū)隨機抽取100個農(nóng)戶,考察每個農(nóng)戶的年收入與年積蓄的情況進行分析,設(shè)第i個農(nóng)戶的年收入xi(萬元),年積蓄yi(萬元),經(jīng)過數(shù)據(jù)處理得
. (Ⅰ)已知家庭的年結(jié)余y對年收入x具有線性相關(guān)關(guān)系,求線性回歸方程;
(Ⅱ)若該地區(qū)的農(nóng)戶年積蓄在5萬以上,即稱該農(nóng)戶已達小康生活,請預測農(nóng)戶達到小康生活的最低年收入應(yīng)為多少萬元?
附:在
=
x+
中,
=
,
=
﹣
,其中
為樣本平均值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】△ABC為等腰直角三角形,AC=BC=4,∠ACB=90°,D、E分別是邊AC和AB的中點,現(xiàn)將△ADE沿DE折起,使面ADE⊥面DEBC,H、F分別是邊AD和BE的中點,平面BCH與AE、AF分別交于I、G兩點
(Ⅰ)求證:IH∥BC;
(Ⅱ)求直線AE與平面角GIC所成角的正弦值.![]()
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知一個動點P在圓x2+y2=36上移動,它與定點Q(4,0)所連線段的中點為M.
(1)求點M的軌跡方程.
(2)過定點(0,﹣3)的直線l與點M的軌跡交于不同的兩點A(x1 , y1),B(x2 , y2)且滿足
+
=
,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,四棱錐P﹣ABCD的底面是AB=2,BC=
的矩形,△PAB是等邊三角形,側(cè)面PAB⊥底面ABCD
(Ⅰ)證明:BC⊥面PAB
(Ⅱ)求側(cè)棱PC與底面ABCD所成的角.![]()
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某校從高一年級學生中隨機抽取40名中學生,將他們的期中考試數(shù)學成績(滿分100分,成績均為不低于40分的整數(shù))分成六段:
,
,…,
,得到如圖所示的頻率分布直方圖.
![]()
(1)求圖中實數(shù)
的值;
(2)若該校高一年級共有640人,試估計該校高一年級期中考試數(shù)學成績不低于60分的人數(shù);
(3)若從數(shù)學成績在
與
兩個分數(shù)段內(nèi)的學生中隨機選取2名學生,求這2名學生的數(shù)學成績之差的絕對值不大于10的概率.
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com