已知二次函數(shù)
在
處取得極值,且在
點處的切線與直線
平行.
(1)求
的解析式;
(2)求函數(shù)
的單調(diào)遞增區(qū)間及極值。
(3)求函數(shù)
在
的最值。
(1)
(2)函數(shù)g(x)的單調(diào)遞增區(qū)間為(﹣∞,
),(1,+∞).在x2=1有極小值為0.在
有極大值
.(3)函數(shù)g(x)的最大值為2,最小值為0.
解析試題分析:(1)由f(x)=ax2+bx﹣3,知f′(x)=2ax+b.由二次函數(shù)f(x)=ax2+bx﹣3在x=1處取得極值,且在(0,﹣3)點處的切線與直線2x+y=0平行,知
,由此能求出f(x).
(2)由f(x)=x2﹣2x﹣3,知g(x)=xf(x)+4x=x3﹣2x2+x,所以g′(x)=3x2﹣4x+1=(3x﹣1)(x﹣1).令g′(x)=0,得
,x2=1.列表討論能求出函數(shù)g(x)=xf(x)+4x的單調(diào)遞增區(qū)間及極值.
(3)由g(0)=0,g(2)=2,結(jié)合(2)的結(jié)論,能求出函數(shù)g(x)的最大值和最小值.
試題解析:(1)由
,可得
. 由題設(shè)可得
即![]()
解得
,
.所以
.
(2)由題意得
,所以
.令
,得
,
.