【題目】從某中學(xué)甲、乙兩班各隨機(jī)抽取
名同學(xué),測(cè)量他們的身高(單位:
),所得數(shù)據(jù)用莖葉圖表示如下,由此可估計(jì)甲、乙兩班同學(xué)的身高情況,則下列結(jié)論正確的是( )
![]()
A. 甲班同學(xué)身高的方差較大 B. 甲班同學(xué)身高的平均值較大
C. 甲班同學(xué)身高的中位數(shù)較大 D. 甲班同學(xué)身高在
以上的人數(shù)較多
【答案】A
【解析】分析:結(jié)合莖葉圖逐一考查所給的選項(xiàng)即可求得最終結(jié)果.
詳解:逐一考查所給的選項(xiàng):
觀察莖葉圖可知甲班同學(xué)數(shù)據(jù)波動(dòng)大,則甲班同學(xué)身高的方差較大,A選項(xiàng)正確;
甲班同學(xué)身高的平均值為:
,
乙班同學(xué)身高的平均值為:
,
則乙班同學(xué)身高的平均值大,B選項(xiàng)錯(cuò)誤;
甲班同學(xué)身高的中位數(shù)為:
,
乙班同學(xué)身高的中位數(shù)為:
,
則乙班同學(xué)身高的中位數(shù)大,C選項(xiàng)錯(cuò)誤;
甲班同學(xué)身高在
以上的人數(shù)為3人,
乙班同學(xué)身高在
以上的人數(shù)為4人,
則乙班同學(xué)身高在
以上的人數(shù)多,D選項(xiàng)錯(cuò)誤;
本題選擇A選項(xiàng).
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
,
.
(1)討論函數(shù)
的單調(diào)性;
(2)是否存在
,使得
對(duì)任意
恒成立?若存在,求出
的最小值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
.
(Ⅰ)求函數(shù)
的單調(diào)區(qū)間;
(Ⅱ)若
,不等式
恒成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】
在平面直角坐標(biāo)系
中,曲線
的參數(shù)方程是
(
為參數(shù),
),在以坐標(biāo)原點(diǎn)為極點(diǎn),
軸的正半軸為極軸的極坐標(biāo)系中,曲線
的極坐標(biāo)方程是
,等邊
的頂點(diǎn)都在
上,且點(diǎn)
,
,
依逆時(shí)針次序排列,點(diǎn)
的極坐標(biāo)為
.
(1)求點(diǎn)
,
,
的直角坐標(biāo);
(2)設(shè)
為
上任意一點(diǎn),求點(diǎn)
到直線
距離的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
(
).
(1)討論函數(shù)
極值點(diǎn)的個(gè)數(shù),并說(shuō)明理由;
(2)若
,
恒成立,求
的最大整數(shù)值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】給出下列五個(gè)命題:
①函數(shù)f(x)=2a2x-1-1的圖象過(guò)定點(diǎn)(
,-1);
②已知函數(shù)f(x)是定義在R上的奇函數(shù),當(dāng)x≥0時(shí),f(x)=x(x+1),若f(a)=-2則實(shí)數(shù)a=-1或2.
③若loga
>1,則a的取值范圍是(
,1);
④若對(duì)于任意x∈R都f(x)=f(4-x)成立,則f(x)圖象關(guān)于直線x=2對(duì)稱;
⑤對(duì)于函數(shù)f(x)=lnx,其定義域內(nèi)任意x1≠x2都滿足f(
)≥![]()
其中所有正確命題的序號(hào)是______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系
中,曲線
的參數(shù)方程為
(
為參數(shù)),以原點(diǎn)
為極點(diǎn),以
軸正半軸為極軸建立極坐標(biāo)系,曲線
的極坐標(biāo)方程為
,
.
(1)當(dāng)
時(shí),判斷曲線
與曲線
的位置關(guān)系;
(2)當(dāng)曲線
上有且只有一點(diǎn)到曲線
的距離等于
時(shí),求曲線
上到曲線
距離為
的點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)在復(fù)數(shù)范圍內(nèi)解方程
(
為虛數(shù)單位)
(2)設(shè)
是虛數(shù),
是實(shí)數(shù),且![]()
(i)求
的值及
的實(shí)部的取值范圍;
(ii)設(shè)
,求證:
為純虛數(shù);
(iii)在(ii)的條件下求
的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓
的焦距為
,且
,圓
與
軸交于點(diǎn)
,
,
為橢圓
上的動(dòng)點(diǎn),
,
面積最大值為
.
(1)求圓
與橢圓
的方程;
(2)圓
的切線
交橢圓
于點(diǎn)
,
,求
的取值范圍.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com