【題目】如圖,在四棱錐
中,底面
為直角梯形,
,
,平面
底面
,
為
的中點(diǎn),
是棱
上的點(diǎn),
,
,
.
![]()
(1)若
為
的中點(diǎn),求證:
面
;
(2)若二面角
為
,設(shè)
,試確定
的值.
【答案】(1)證明見解析 (2)![]()
【解析】
(1)連接
,交
于
,連接
.證明
.利用直線與平面平行的判定定理證明
平面
.
(2)以
為原點(diǎn),
分別為
軸建立空間直角坐標(biāo)系.求出平面
的法向量,平面
法向量,利用二面角
為
,求解
的值,得到答案.
(1)證明:連接
,交
于
,連接
.
∵
且
,
四邊形
為平行四邊形,且
為
中點(diǎn),
又∵點(diǎn)
是棱
的中點(diǎn),所以
.
∵
平面
,
平面
.
∴
面
.
![]()
(2)
,
為
的中點(diǎn),∴
.
∵平面
平面
,且平面
∩平面
,
∴
平面
.
∵
,![]()
為
的中點(diǎn),∴四邊形
為平行四邊形,∴
.
∵
,∴
即![]()
以
為原點(diǎn),
分別為
軸建立空間直角坐標(biāo)系.
則
則平面
的法向量為
設(shè)![]()
設(shè)平面
的法向量為
則
即
可取![]()
由二面角
為![]()
所以
化簡得:
,解得:
或
(舍)
所以
,則![]()
所以
.
![]()
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系
中,直線
的參數(shù)方程為
為參數(shù)),以
為極點(diǎn),
軸的正半軸為極軸建立極坐標(biāo)系,曲線
的極坐標(biāo)方程為
,點(diǎn)
是曲線
上的動(dòng)點(diǎn),點(diǎn)
在
的延長線上,且
,點(diǎn)
的軌跡為
.
(1)求直線
及曲線
的極坐標(biāo)方程;
(2)若射線
與直線
交于點(diǎn)
,與曲線
交于點(diǎn)
(與原點(diǎn)不重合),求
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線![]()
,過焦點(diǎn)
的斜率存在的直線與拋物線交于
,
,且
.
![]()
(1)求拋物線的方程;
(2)已知
與拋物線交于點(diǎn)
(異于原點(diǎn)),過點(diǎn)
作斜率小于
的直線交拋物線于
,
兩點(diǎn)(點(diǎn)
在
,
之間),過點(diǎn)
作
軸的平行線,交
于
,交
于B,
與
的面積分別為
,
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C過點(diǎn)M(1,
),兩個(gè)焦點(diǎn)為A(﹣1,0),B(1,0),O為坐標(biāo)原點(diǎn).
(1)求橢圓C的方程;
(2)直線l過點(diǎn)A(﹣1,0),且與橢圓C交于P,Q兩點(diǎn),求△BPQ面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)
.
(1)若函數(shù)
在區(qū)間
(
為自然對(duì)數(shù)的底數(shù))上有唯一的零點(diǎn),求實(shí)數(shù)
的取值范圍;
(2)若在
(
為自然對(duì)數(shù)的底數(shù))上存在一點(diǎn)
,使得
成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2022年第24屆冬奧會(huì)將在中國北京和張家口舉行,為了宣傳冬奧會(huì),某大學(xué)從全校學(xué)生中隨機(jī)抽取了120名學(xué)生,對(duì)是否收看第23屆平昌冬奧會(huì)開幕式情況進(jìn)行了問卷調(diào)查,統(tǒng)計(jì)數(shù)據(jù)如下:
收看 | 沒收看 | |
男生 | 60 | 20 |
女生 | 20 | 20 |
(1)根據(jù)上表數(shù)據(jù),能否有
的把握認(rèn)為,收看開幕式與性別有關(guān)?
(2)現(xiàn)從參與問卷調(diào)查且收看了開幕式的學(xué)生中,采用按性別分層抽樣的方法選取8人,參加2022年北京冬奧會(huì)志愿者宣傳活動(dòng),若從這8人中隨機(jī)選取2人到較廣播站開展冬奧會(huì)及冰雪項(xiàng)目宣傳介紹,求恰好選到一名男生一名女生的概率.
附:
,其中
.
P( | 0.10 | 0.05 | 0.025 | 0.01 | 0.005 |
| 2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工廠預(yù)購軟件服務(wù),有如下兩種方案:
方案一:軟件服務(wù)公司每日收取工廠60元,對(duì)于提供的軟件服務(wù)每次10元;
方案二:軟件服務(wù)公司每日收取工廠200元,若每日軟件服務(wù)不超過15次,不另外收費(fèi),若超過15次,超過部分的軟件服務(wù)每次收費(fèi)標(biāo)準(zhǔn)為20元.
(1)設(shè)日收費(fèi)為
元,每天軟件服務(wù)的次數(shù)為
,試寫出兩種方案中
與
的函數(shù)關(guān)系式;
(2)該工廠對(duì)過去100天的軟件服務(wù)的次數(shù)進(jìn)行了統(tǒng)計(jì),得到如圖所示的條形圖,依據(jù)該統(tǒng)計(jì)數(shù)據(jù),把頻率視為概率,從節(jié)約成本的角度考慮,從兩個(gè)方案中選擇一個(gè),哪個(gè)方案更合適?請說明理由.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在四棱錐
中,底面
是菱形,
,
與
交于點(diǎn)
,
底面
,
為
的中點(diǎn),
.
![]()
(1)求證:
平面
;
(2)求異面直線
與
所成角的余弦值;
(3)求
與平面
所成角的正弦值.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com