【題目】已知函數(shù)
,
.
(Ⅰ)當(dāng)
在
處的切線與直線
垂直時(shí),方程
有兩相異實(shí)數(shù)根,求
的取值范圍;
(Ⅱ)若冪函數(shù)
的圖象關(guān)于
軸對(duì)稱,求使不等式
在
上恒成立的
的取值范圍.
【答案】解:(Ⅰ)由題設(shè)可得
,令
,
則
令
得
,
|
|
|
|
|
| 0 |
|
| 遞減 | 極小值 | 遞增 |
,
且
有兩個(gè)不等實(shí)根
即
.
(Ⅱ)由題設(shè)有
,令
,
則
,令
,則
又
,
,
在
在單調(diào)遞增,
又
,
當(dāng)
,即
時(shí),
,
所以
在
內(nèi)單調(diào)遞增,
,所以
.
②當(dāng)
,即
時(shí),由
在
內(nèi)單調(diào)遞增,
且
,
使得
,
|
|
|
|
|
| 0 |
|
| 遞減 | 極小值 | 遞增 |
所以
的最小值為
,
又
,所以
,
因此,要使當(dāng)
時(shí),
恒成立,只需
,即
即可.
解得
,此時(shí)由
,可得
.
以下求出a的取值范圍.
設(shè)
,
, 得
,
所以
在
上單調(diào)遞減,從而
,
綜上①②所述,
的取值范圍 ![]()
【解析】(1)方程f(x) = g(x) 有兩相異的實(shí)數(shù)根等價(jià)于φ ( x ) = g ( x ) f ( x )由兩個(gè)零點(diǎn)。(2)令t ( x ) = g ( x ) f ( x ),求出t ( x ) 的導(dǎo)函數(shù)利用導(dǎo)函數(shù)的性質(zhì)對(duì)a分情況討論進(jìn)而研究出函數(shù)的單調(diào)性從而確定出函數(shù)的最值進(jìn)而得到a的取值范圍。
【考點(diǎn)精析】認(rèn)真審題,首先需要了解利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性(一般的,函數(shù)的單調(diào)性與其導(dǎo)數(shù)的正負(fù)有如下關(guān)系: 在某個(gè)區(qū)間
內(nèi),(1)如果
,那么函數(shù)
在這個(gè)區(qū)間單調(diào)遞增;(2)如果
,那么函數(shù)
在這個(gè)區(qū)間單調(diào)遞減),還要掌握函數(shù)的最大(小)值與導(dǎo)數(shù)(求函數(shù)
在
上的最大值與最小值的步驟:(1)求函數(shù)
在
內(nèi)的極值;(2)將函數(shù)
的各極值與端點(diǎn)處的函數(shù)值
,
比較,其中最大的是一個(gè)最大值,最小的是最小值)的相關(guān)知識(shí)才是答題的關(guān)鍵.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在四棱錐
中,底面
為正方形,
平面
,且
,點(diǎn)
在線段
上,且
.![]()
(Ⅰ)證明:平面
平面
;
(Ⅱ)求四棱錐
的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】我市某小學(xué)三年級(jí)有甲、乙兩個(gè)班,其中甲班有男生30人,女生20人,乙班有男生25人,女生25人,現(xiàn)在需要各班按男、女生分層抽取
的學(xué)生進(jìn)行某項(xiàng)調(diào)查,則兩個(gè)班共抽取男生人數(shù)是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
,
.
(1)當(dāng)
時(shí),求函數(shù)
的圖象在
處的切線方程;
(2)若函數(shù)
在定義域上為單調(diào)增函數(shù).
①求
最大整數(shù)值;
②證明:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】“求方程
的解”有如下解題思路:設(shè)
,則
在
上單調(diào)遞減,且
,所以原方程有唯一解
.類比上述解題思路,不等式
的解集是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】執(zhí)行如圖的程序框圖,為使輸出S的值小于91,則輸入的正整數(shù)N的最小值為( )![]()
A.5
B.4
C.3
D.2
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知
為坐標(biāo)原點(diǎn),
,
是橢圓
上的點(diǎn),且
,設(shè)動(dòng)點(diǎn)
滿足
.
(Ⅰ)求動(dòng)點(diǎn)
的軌跡
的方程;
(Ⅱ)若直線
與曲線
交于
兩點(diǎn),求三角形
面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某企業(yè)為了對(duì)新研發(fā)的一批產(chǎn)品進(jìn)行合理定價(jià),將產(chǎn)品按事先擬定的價(jià)格進(jìn)行試銷,得到一組銷售數(shù)據(jù)
,如表所示:
![]()
已知![]()
(1)求
的值
(2)已知變量
具有線性相關(guān)性,求產(chǎn)品銷量
關(guān)于試銷單價(jià)
的線性回歸方程
可供選擇的數(shù)據(jù)![]()
(3)用
表示(2)中所求的線性回歸方程得到的與
對(duì)應(yīng)的產(chǎn)品銷量的估計(jì)值。當(dāng)銷售數(shù)據(jù)
對(duì)應(yīng)的殘差的絕對(duì)值
時(shí),則將銷售數(shù)據(jù)
稱為一個(gè)“好數(shù)據(jù)”。試求這6組銷售數(shù)據(jù)中的 “好數(shù)據(jù)”。
參考數(shù)據(jù):線性回歸方程中
的最小二乘估計(jì)分別是![]()
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com