【題目】已知函數(shù)
.證明:
(1)
存在唯一的極值點(diǎn);
(2)
有且僅有兩個(gè)實(shí)根,且兩個(gè)實(shí)根互為倒數(shù).
【答案】(1)見(jiàn)詳解;(2)見(jiàn)詳解
【解析】
(1)先對(duì)函數(shù)
求導(dǎo),根據(jù)導(dǎo)函數(shù)的單調(diào)性,得到存在唯一
,使得
,進(jìn)而可得判斷函數(shù)
的單調(diào)性,即可確定其極值點(diǎn)個(gè)數(shù),證明出結(jié)論成立;
(2)先由(1)的結(jié)果,得到
,
,得到
在
內(nèi)存在唯一實(shí)根,記作
,再求出
,即可結(jié)合題意,說(shuō)明結(jié)論成立.
(1)由題意可得,
的定義域?yàn)?/span>
,
由
,
得
,
顯然
單調(diào)遞增;
又
,
,
故存在唯一
,使得
;
又當(dāng)
時(shí),
,函數(shù)
單調(diào)遞增;當(dāng)
時(shí),
,函數(shù)
單調(diào)遞減;
因此,
存在唯一的極值點(diǎn);
(2)由(1)知,
,又
,
所以
在
內(nèi)存在唯一實(shí)根,記作
.
由
得
,
又
,
故
是方程
在
內(nèi)的唯一實(shí)根;
綜上,
有且僅有兩個(gè)實(shí)根,且兩個(gè)實(shí)根互為倒數(shù).
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】關(guān)于函數(shù)
,
.有下列命題:
①對(duì)
,恒有
成立.
②
,使得
成立.
③“若
,則有
且
.”的否命題.
④“若
且
,則有
.”的逆否命題.
其中,真命題有_____________.(只需填序號(hào))
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,三棱錐
中,
平面
,
,
,
,
是
的中點(diǎn),
是
的中點(diǎn),點(diǎn)
在
上,
.
![]()
(1)證明:平面
平面
;
(2)證明:
平面
;
(3)求二面角
的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓心為
的圓經(jīng)過(guò)點(diǎn)
和
,且圓心
在直線
上.
(1)求圓
的方程;
(2)若過(guò)點(diǎn)
的直線
被圓
截得的弦長(zhǎng)為
,求直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)甲、乙兩位同學(xué)上學(xué)期間,每天7:30之前到校的概率均為
.假定甲、乙兩位同學(xué)到校情況互不影響,且任一同學(xué)每天到校情況相互獨(dú)立.
(Ⅰ)用
表示甲同學(xué)上學(xué)期間的三天中7:30之前到校的天數(shù),求隨機(jī)變量
的分布列和數(shù)學(xué)期望;
(Ⅱ)設(shè)
為事件“上學(xué)期間的三天中,甲同學(xué)在7:30之前到校的天數(shù)比乙同學(xué)在7:30之前到校的天數(shù)恰好多2”,求事件
發(fā)生的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)
為
的導(dǎo)函數(shù).
(Ⅰ)求
的單調(diào)區(qū)間;
(Ⅱ)當(dāng)
時(shí),證明
;
(Ⅲ)設(shè)
為函數(shù)
在區(qū)間
內(nèi)的零點(diǎn),其中
,證明
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了解甲、乙兩種離子在小鼠體內(nèi)的殘留程度,進(jìn)行如下試驗(yàn):將200只小鼠隨機(jī)分成
兩組,每組100只,其中
組小鼠給服甲離子溶液,
組小鼠給服乙離子溶液.每只小鼠給服的溶液體積相同、摩爾濃度相同.經(jīng)過(guò)一段時(shí)間后用某種科學(xué)方法測(cè)算出殘留在小鼠體內(nèi)離子的百分比.根據(jù)試驗(yàn)數(shù)據(jù)分別得到如下直方圖:
![]()
記
為事件:“乙離子殘留在體內(nèi)的百分比不低于
”,根據(jù)直方圖得到
的估計(jì)值為
.
(1)求乙離子殘留百分比直方圖中
的值;
(2)分別估計(jì)甲、乙離子殘留百分比的平均值(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值為代表).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】改革開(kāi)放以來(lái),人們的支付方式發(fā)生了巨大轉(zhuǎn)變.近年來(lái),移動(dòng)支付已成為主要支付方式之一.為了解某校學(xué)生上個(gè)月A,B兩種移動(dòng)支付方式的使用情況,從全校學(xué)生中隨機(jī)抽取了100人,發(fā)現(xiàn)樣本中A,B兩種支付方式都不使用的有5人,樣本中僅使用A和僅使用B的學(xué)生的支付金額分布情況如下:
支付方式 | (0,1000] | (1000,2000] | 大于2000 |
僅使用A | 18人 | 9人 | 3人 |
僅使用B | 10人 | 14人 | 1人 |
(Ⅰ)從全校學(xué)生中隨機(jī)抽取1人,估計(jì)該學(xué)生上個(gè)月A,B兩種支付方式都使用的概率;
(Ⅱ)從樣本僅使用A和僅使用B的學(xué)生中各隨機(jī)抽取1人,以X表示這2人中上個(gè)月支付金額大于1000元的人數(shù),求X的分布列和數(shù)學(xué)期望;
(Ⅲ)已知上個(gè)月樣本學(xué)生的支付方式在本月沒(méi)有變化.現(xiàn)從樣本僅使用A的學(xué)生中,隨機(jī)抽查3人,發(fā)現(xiàn)他們本月的支付金額都大于2000元.根據(jù)抽查結(jié)果,能否認(rèn)為樣本僅使用A的學(xué)生中本月支付金額大于2000元的人數(shù)有變化?說(shuō)明理由.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com