【題目】某工廠對新研發的一種產品進行試銷,得到如下數據表:
![]()
(1)根據上表求出回歸直線方程
,并預測當單價定為8.3元時的銷量;
(2)如果該工廠每件產品的成本為5.5元,利用所求的回歸方程,要使得利潤最大,單價應該定為多少?
附:線性回歸方程
中斜率和截距最小二乘估計計算公式:
, ![]()
科目:高中數學 來源: 題型:
【題目】函數f(x)的定義域為(0,+∞),且對一切x>0,y>0都有
,當
時,有![]()
(1)求f(1)的值;
(2)判斷f(x)的單調性并加以證明;
(3)若f(4)=2,求f(x)在[1,16]上的值域.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設直線
經過點
傾斜角為
.(10分).
(1)寫出直線
的參數方程
(2)求直線
與直線
的交點到點
的距離
(3)設
與圓
相交于兩點
,求點
到
兩點的距離的和與積。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】《中國詩詞大會》是中央電視臺最近推出的一檔有重大影響力的大型電視文化節目,今年兩會期間,教育部部長陳寶生答記者問時就給予其高度評價.基于這樣的背景,山東某中學積極響應,也舉行了一次詩詞競賽.組委會在競賽后,從中抽取了部分選手的成績(百分制),作為樣本進行統計,作出了圖1的頻率分布直方圖和圖2的莖葉圖(但中間三行污損,看不清數據).
![]()
(I)求樣本容量
和頻率分布直方圖中的
,
的值;
(II)分數在[80,90)的學生中,男生有2人,現從該組抽取三人“座談”,寫出基本事件空間并求至少有兩名女生的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知{an}是公差為1的等差數列,a1 , a5 , a25成等比數列.
(1)求數列{an}的通項公式;
(2)設bn=
3+an , 求數列{bn}的前n項和Tn .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,已知拋物線
:
,過焦點
斜率大于零的直線
交拋物線于
、
兩點,且與其準線交于點
.
![]()
(Ⅰ)若線段
的長為
,求直線
的方程;
(Ⅱ)在
上是否存在點
,使得對任意直線
,直線
,
,
的斜率始終成等差數列,若存在求點
的坐標;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com