(本小題滿分13分)
設(shè)函數(shù)
(
為常數(shù),
是自然對(duì)數(shù)的底數(shù)).
(Ⅰ)當(dāng)
時(shí),求函數(shù)
的單調(diào)區(qū)間;
(Ⅱ)若函數(shù)
在
內(nèi)存在兩個(gè)極值點(diǎn),求
的取值范圍.
(I)
的單調(diào)遞減區(qū)間為
,單調(diào)遞增區(qū)間為
.
(II)函數(shù)在
內(nèi)存在兩個(gè)極值點(diǎn)時(shí),k的取值范圍為
.
解析試題分析:(I)函數(shù)
的定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/81/6/1jaoy4.png" style="vertical-align:middle;" />,![]()
![]()
由
可得
,
得到
的單調(diào)遞減區(qū)間為
,單調(diào)遞增區(qū)間為
.
(II)分
,
,
,
時(shí),
討論導(dǎo)函數(shù)值的正負(fù),根據(jù)函數(shù)的單調(diào)性,明確極值點(diǎn)的有無(wú)、多少.
試題解析:(I)函數(shù)
的定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/81/6/1jaoy4.png" style="vertical-align:middle;" />,![]()
![]()
![]()
由
可得
,
所以當(dāng)
時(shí),
,函數(shù)
單調(diào)遞減,
當(dāng)
時(shí),
,函數(shù)
單調(diào)遞增.
所以
的單調(diào)遞減區(qū)間為
,單調(diào)遞增區(qū)間為
.
(II)由(I)知,
時(shí),函數(shù)
在
內(nèi)單調(diào)遞減,
故
在
內(nèi)不存在極值點(diǎn);
當(dāng)
時(shí),設(shè)函數(shù)
,
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/ea/2/16ufr3.png" style="vertical-align:middle;" />,
當(dāng)
時(shí),
當(dāng)
時(shí),
,
單調(diào)遞增,
故
在
內(nèi)不存在兩個(gè)極值點(diǎn);
當(dāng)
時(shí),
得
時(shí),
,函數(shù)
單調(diào)遞減,
時(shí),
,函數(shù)
單調(diào)遞增,
所以函數(shù)
的最小值為
,
函數(shù)
在
內(nèi)存在兩個(gè)極值點(diǎn);
當(dāng)且僅當(dāng)
,
解得
,
綜上所述,函數(shù)在
內(nèi)存在兩個(gè)極值點(diǎn)時(shí),k的取值范圍為
.
考點(diǎn):應(yīng)用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、極值,分類討論思想,不等式組的解法.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)
,其中
是自然對(duì)數(shù)的底數(shù),
.
(1)若
,求曲線
在點(diǎn)
處的切線方程;
(2)若
,求
的單調(diào)區(qū)間;
(3)若
,函數(shù)
的圖像與函數(shù)
的圖像有3個(gè)不同的交點(diǎn),求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)
。
(1)若
的單調(diào)減區(qū)間是
,求實(shí)數(shù)a的值;
(2)若函數(shù)
在區(qū)間
上都為單調(diào)函數(shù)且它們的單調(diào)性相同,求實(shí)數(shù)a的取值范圍;
(3)a、b是函數(shù)
的兩個(gè)極值點(diǎn),a<b,
。求證:對(duì)任意的
,不等式
成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)函數(shù)
.
(1)當(dāng)
(
為自然對(duì)數(shù)的底數(shù))時(shí),求
的最小值;
(2)討論函數(shù)
零點(diǎn)的個(gè)數(shù);
(3)若對(duì)任意
恒成立,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)![]()
,
.已知函數(shù)
有兩個(gè)零點(diǎn)
,且
.
(1)求
的取值范圍;
(2)證明
隨著
的減小而增大;
(3)證明
隨著
的減小而增大.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)
(
為常數(shù)).
(1)若
是函數(shù)
的一個(gè)極值點(diǎn),求
的值;
(2)當(dāng)
時(shí),試判斷
的單調(diào)性;
(3)若對(duì)任意的![]()
,使不等式
恒成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)函數(shù)
.
(1) 當(dāng)
時(shí),求函數(shù)
的極值;
(2)若
,證明:
在區(qū)間
內(nèi)存在唯一的零點(diǎn);
(3)在(2)的條件下,設(shè)
是
在區(qū)間
內(nèi)的零點(diǎn),判斷數(shù)列
的增減性.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
用長(zhǎng)為18 m的鋼條圍成一個(gè)長(zhǎng)方體容器的框架,如果所制的容器的長(zhǎng)與寬之比為2∶1,那么高為多少時(shí)容器的容積最大?并求出它的最大容積.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com