【題目】已知橢圓
的離心率為
,M是橢圓C的上頂點(diǎn),
,F(xiàn)2是橢圓C的焦點(diǎn),
的周長是6.
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)過動點(diǎn)P(1,t)作直線交橢圓C于A,B兩點(diǎn),且|PA|=|PB|,過P作直線l,使l與直線AB垂直,證明:直線l恒過定點(diǎn),并求此定點(diǎn)的坐標(biāo).
【答案】(Ⅰ)
;(Ⅱ)詳見解析.
【解析】
(Ⅰ)由題得到關(guān)于a,b,c的方程組,解方程組即得橢圓C的標(biāo)準(zhǔn)方程;(Ⅱ)當(dāng)直線AB斜率存在,設(shè)AB的直線方程為
,進(jìn)一步求出直線的方程為
,
所以直線
恒過定點(diǎn)
.當(dāng)直線
斜率不存在時,直線
的方程為
,此時直線
為
軸,也過
.綜上所述直線
恒過點(diǎn)
.
解:(Ⅰ)由于
是橢圓
的上頂點(diǎn),由題意得
,
又橢圓離心率為
,即
,
解得
,
,
又
,
所以橢圓
的標(biāo)準(zhǔn)方程
。
(Ⅱ)當(dāng)直線AB斜率存在,設(shè)AB的直線方程為
,
聯(lián)立
,得
,
由題意,
,
設(shè)
,
則
,
因?yàn)?/span>
,所以
是
的中點(diǎn).
即
,得
,
①
又
,l的斜率為
,
直線
的方程為
②
把①代入②可得:![]()
所以直線
恒過定點(diǎn)
.
當(dāng)直線
斜率不存在時,直線
的方程為
,
此時直線
為
軸,也過
.
綜上所述直線
恒過點(diǎn)
.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列
的前n項(xiàng)和為
,且滿足
,數(shù)列
中,
,對任意正整數(shù)
,
.
(1)求數(shù)列
的通項(xiàng)公式;
(2)是否存在實(shí)數(shù)
,使得數(shù)列
是等比數(shù)列?若存在,請求出實(shí)數(shù)
及公比q的值,若不存在,請說明理由;
(3)求數(shù)列
前n項(xiàng)和
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)橢圓
(
)的左、右焦點(diǎn)為
,右頂點(diǎn)為
,上頂點(diǎn)為
.已知
.
(1)求橢圓的離心率;
(2)設(shè)
為橢圓上異于其頂點(diǎn)的一點(diǎn),以線段
為直徑的圓經(jīng)過點(diǎn)
,經(jīng)過原點(diǎn)
的直線
與該圓相切,求直線
的斜率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知橢圓
的離心率為
,且過點(diǎn)
.
![]()
(I)求橢圓
的標(biāo)準(zhǔn)方程;
(II)設(shè)點(diǎn)
,
是橢圓
上異于頂點(diǎn)的任意兩點(diǎn),直線
,
的斜率分別為
,
且
.
①求
的值;
②設(shè)點(diǎn)
關(guān)于
軸的對稱點(diǎn)為
,試求直線
的斜率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)數(shù)列
的前n項(xiàng)和為
,對一切
,點(diǎn)
都在函數(shù)
的圖像上.
(1)證明:當(dāng)
時,
;
(2)求數(shù)列
的通項(xiàng)公式;
(3)設(shè)
為數(shù)列
的前n項(xiàng)的積,若不等式
對一切
成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系 xOy 中,已知橢圓 C:
=1(a>b>0)的離心率為
,且過點(diǎn)
,點(diǎn)P在第四象限, A為左頂點(diǎn), B為上頂點(diǎn), PA交y軸于點(diǎn)C,PB交x軸于點(diǎn)D.
![]()
(1) 求橢圓 C 的標(biāo)準(zhǔn)方程;
(2) 求 △PCD 面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在等腰Rt△ABC中,∠BAC=90°,腰長為2,D、E分別是邊AB、BC的中點(diǎn),將△BDE沿DE翻折,得到四棱錐B﹣ADEC,且F為棱BC中點(diǎn),BA
.
![]()
(1)求證:EF⊥平面BAC;
(2)在線段AD上是否存在一點(diǎn)Q,使得AF∥平面BEQ?若存在,求二面角Q﹣BE﹣A的余弦值,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓C:x2+y2+2x﹣4y+3=0.
(1)若直線l:x+y=0與圓C交于A,B兩點(diǎn),求弦AB的長;
(2)從圓C外一點(diǎn)P(x1,y1)向該圓引一條切線,切點(diǎn)為M,O為坐標(biāo)原點(diǎn),且有|PM|=|PO|,求使得|PM|取得最小值的點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】高鐵是一種快捷的交通工具,為我們的出行提供了極大的方便。某高鐵換乘站設(shè)有編號為①,②,③,④,⑤的五個安全出口,若同時開放其中的兩個安全出口,疏散
名乘客所需的時間如下:
安全出口編號 | ①② | ②③ | ③④ | ④⑤ | ①⑤ |
疏散乘客時間(s) | 120 | 220 | 160 | 140 | 200 |
則疏散乘客最快的一個安全出口的編號是( )
A. ①B. ②C. ④D. ⑤
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com