【題目】在直角坐標(biāo)系
中,直線
的參數(shù)方程
(
為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),
軸的正半軸為極軸建立極坐標(biāo)系,曲線
的極坐標(biāo)方程是
.
(1)求曲線
的直角坐標(biāo)方程和直線
的普通方程;
(2)若直線
與曲線
交于
、
兩點(diǎn),點(diǎn)
的坐標(biāo)為
,求
的值.
【答案】(1)曲線
的直角坐標(biāo)方程為
,直線
的普通方程為
.(2)![]()
【解析】
(1)對曲線
利用
轉(zhuǎn)化極坐標(biāo)方程,對直線
消去參數(shù)
即可轉(zhuǎn)化為普通方程;
(2)由題列出直線
的標(biāo)準(zhǔn)參數(shù)方程,代入曲線
的直角坐標(biāo)方程中,由
,利用韋達(dá)定理求解即可.
解:(1)
,即
,
,即
,
又
(
為參數(shù)),所以
,
曲線
的直角坐標(biāo)方程為
,直線
的普通方程為
.
(2)過
點(diǎn)的直線
的標(biāo)準(zhǔn)參數(shù)方程為
(
為參數(shù)),
將直線
的標(biāo)準(zhǔn)參數(shù)方程代入曲線
的直角坐標(biāo)方程得
,
即
,且
,
設(shè)
,
兩點(diǎn)對應(yīng)的參數(shù)分別為
,
,
.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知四邊形
是邊長為5的菱形,對角線
(如圖1),現(xiàn)以
為折痕將菱形折起,使點(diǎn)
達(dá)到點(diǎn)
的位置.棱
,
的中點(diǎn)分為
,
,且四面體
的外接球球心落在四面體內(nèi)部(如圖2),則線段
長度的取值范圍為( )
![]()
A.
B.
C.
D.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某班級有60名學(xué)生,學(xué)號分別為1~60,其中男生35人,女生25人.為了了解學(xué)生的體質(zhì)情況,甲、乙兩人對全班最近一次體育測試的成績分別進(jìn)行了隨機(jī)抽樣.其中一人用的是系統(tǒng)抽樣,另一人用的是分層抽樣,他們得到各12人的樣本數(shù)據(jù)如下所示,并規(guī)定體育成績大于或等于80人為優(yōu)秀.
甲抽取的樣本數(shù)據(jù):
學(xué)號 | 4 | 9 | 14 | 19 | 24 | 29 | 34 | 39 | 44 | 49 | 54 | 59 |
性別 | 男 | 女 | 男 | 男 | 女 | 男 | 女 | 男 | 女 | 女 | 男 | 男 |
體育成績 | 90 | 80 | 75 | 80 | 83 | 85 | 75 | 80 | 70 | 80 | 83 | 70 |
女抽取的樣本數(shù)據(jù):
學(xué)號 | 1 | 8 | 10 | 20 | 23 | 28 | 33 | 35 | 43 | 48 | 52 | 57 |
性別 | 男 | 男 | 男 | 男 | 男 | 男 | 男 | 女 | 女 | 女 | 女 | 女 |
體育成績 | 95 | 85 | 85 | 80 | 70 | 80 | 80 | 65 | 70 | 60 | 70 | 80 |
(Ⅰ)在乙抽取的樣本中任取4人,記這4人中體育成績優(yōu)秀的學(xué)生人數(shù)為
,求
的分布列和數(shù)學(xué)期望;
(Ⅱ)請你根據(jù)乙抽取的樣本數(shù)據(jù),判斷是否有95%的把握認(rèn)為體育成績是否為優(yōu)秀和性別有關(guān);
(Ⅲ)判斷甲、乙各用的何種抽樣方法,并根據(jù)(Ⅱ)的結(jié)論判斷哪種抽樣方法更優(yōu),說明理由.
附:![]()
| 0.15 | 0.10 | 0.05 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.706 | 3.841 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】年前某市質(zhì)監(jiān)部門根據(jù)質(zhì)量管理考核指標(biāo)對本地的500家食品生產(chǎn)企業(yè)進(jìn)行考核,然后通過隨機(jī)抽樣抽取其中的50家,統(tǒng)計其考核成績(單位:分),并制成如下頻率分布直方圖.
![]()
(1)求這50家食品生產(chǎn)企業(yè)考核成績的平均數(shù)
(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值為代表)及中位數(shù)a(精確到0.01)
(2)該市質(zhì)監(jiān)部門打算舉辦食品生產(chǎn)企業(yè)質(zhì)量交流會,并從這50家食品生產(chǎn)企業(yè)中隨機(jī)抽取4家考核成績不低于88分的企業(yè)發(fā)言,記抽到的企業(yè)中考核成績在
的企業(yè)數(shù)為X,求X的分布列與數(shù)學(xué)期望
(3)若該市食品生產(chǎn)企業(yè)的考核成績X服從正態(tài)分布
其中
近似為50家食品生產(chǎn)企業(yè)考核成績的平均數(shù)
,
近似為樣本方差
,經(jīng)計算得
,利用該正態(tài)分布,估計該市500家食品生產(chǎn)企業(yè)質(zhì)量管理考核成績高于90.06分的有多少家?(結(jié)果保留整數(shù)).
附參考數(shù)據(jù)與公式:
![]()
![]()
則
,
.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“今年我已經(jīng)8個月沒有戲拍了”迪麗熱巴在8月的一檔綜藝節(jié)目上說,霍建華在家里開玩笑時說到“我失業(yè)很久了”;明道也在參加《演員請就位》時透露,已經(jīng)大半年沒有演過戲.為了了解演員的生存現(xiàn)狀,什么樣的演員才有戲演,有人搜集了內(nèi)地、港澳臺共計9481名演員的演藝生涯資料,在統(tǒng)計的所有演員資料后得到以下結(jié)論:①有
的人在2019年沒有在影劇里露過臉;②2019年備案的電視劇數(shù)量較2016年時下滑超過三分之一;③女演員面臨的競爭更加激烈;④演員的艱難程度隨著年齡的增加而降低.請問:以下判斷正確的是( )
A.調(diào)查采用了分層抽樣B.調(diào)查采用了簡單隨機(jī)抽樣
C.調(diào)查采用了系統(tǒng)抽樣D.非抽樣案例
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓
的左頂點(diǎn)為
,左、右焦點(diǎn)分別為
,離心率為
,
是橢圓上的一個動點(diǎn)(不與左、右頂點(diǎn)重合),且
的周長為6,點(diǎn)
關(guān)于原點(diǎn)的對稱點(diǎn)為
,直線
交于點(diǎn)
.
![]()
(1)求橢圓方程;
(2)若直線
與橢圓交于另一點(diǎn)
,且
,求點(diǎn)
的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知正四棱錐
的側(cè)棱和底面邊長相等,在這個正四棱錐的
條棱中任取兩條,按下列方式定義隨機(jī)變量
的值:
若這兩條棱所在的直線相交,則
的值是這兩條棱所在直線的夾角大小(弧度制);
若這兩條棱所在的直線平行,則
;
若這兩條棱所在的直線異面,則
的值是這兩條棱所在直線所成角的大小(弧度制).
(1)求
的值;
(2)求隨機(jī)變量
的分布列及數(shù)學(xué)期望
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知三棱錐
中,
與
均為等腰直角三角形,且
,
,
為
上一點(diǎn),且
平面
.
![]()
(1)求證:
;
(2)過
作一平面分別交
,
,
于
,
,
,若四邊形
為平行四邊形,求多面體
的表面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知
是橢圓C:
上一點(diǎn),點(diǎn)P到橢圓C的兩個焦點(diǎn)的距離之和為
.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)A,B是橢圓C上異于點(diǎn)P的兩點(diǎn),直線PA與直線
交于點(diǎn)M,
是否存在點(diǎn)A,使得
?若存在,求出點(diǎn)A的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com