已知圓
的圓心在坐標原點
,且恰好與直線
相切,設點A為圓上一動點,
軸于點
,且動點
滿足
,設動點
的軌跡為曲線![]()
(1)求曲線C的方程,
(2)直線l與直線l,垂直且與曲線C交于B、D兩點,求△OBD面積的最大值.
(1)
;(2)![]()
解析試題分析:(1)此題考察軌跡方程,考察代入法的習題,根據圓心到直線的距離等于半徑,可以求出圓的半徑,即知道圓
的方程
,設動點
,
,
,利用公式
,寫出向量相等的坐標表示,利用
,代入,得到關于
的方程;
(2)利用直線方程與橢圓方程聯立,
和點到直線的距離公式,得出面積,并求出最大值.
(1)設動點
,
因為
軸于
,所以
,
設圓
的方程為
,由題意得
, 所以圓
的程為
.
由題意,
,所以
,
所以
即![]()
將
代入圓
,得動點
的軌跡方程
(2)由題意可設直線
,設直線
與橢圓
交于
,
聯立方程
得
,
,解得
,
,
又因為點
到直線
的距離
,
![]()
![]()
.(當且僅當
即
時取到最大值)
面積的最大值為
.
考點:1.代入法求軌跡方程;2.直線方程與圓錐曲線聯立;3.弦長公式.
科目:高中數學 來源: 題型:解答題
已知拋物線C:
的焦點為F,直線y=4與y軸的交點為P,與C的交點為Q,且
.
(1)求拋物線C的方程;
(2)過F的直線l與C相交于A,B兩點,若AB的垂直平分線
與C相交于M,N兩點,且A,M,B,N四點在同一個圓上,求直線l的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
在平面直角坐標系
中,已知橢圓的焦點在
軸上,離心率為
,且經過點
.
(1)求橢圓的標準方程;
(2) 以橢圓的長軸為直徑作圓
,設
為圓
上不在坐標軸上的任意一點,
為
軸上一點,過圓心
作直線
的垂線交橢圓右準線于點
.問:直線
能否與圓
總相切,如果能,求出點
的坐標;如果不能,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(12分)(2011•重慶)如圖,橢圓的中心為原點O,離心率e=
,一條準線的方程為x=2
.![]()
(Ⅰ)求該橢圓的標準方程.
(Ⅱ)設動點P滿足
,其中M,N是橢圓上的點.直線OM與ON的斜率之積為﹣
.
問:是否存在兩個定點F1,F2,使得|PF1|+|PF2|為定值.若存在,求F1,F2的坐標;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
在平面直角坐標系
中,已知橢圓
∶
的左、右焦點分別
、
焦距為
,且與雙曲線
共頂點.
為橢圓
上一點,直線
交橢圓
于另一點
.
(1)求橢圓
的方程;
(2)若點
的坐標為
,求過
、
、
三點的圓的方程;![]()
(3)若
,且
,求
的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
橢圓
:
的左頂點為
,直線
交橢圓
于
兩點(
上
下),動點
和定點
都在橢圓
上.
(1)求橢圓方程及四邊形
的面積.
(2)若四邊形
為梯形,求點
的坐標.
(3)若
為實數,
,求
的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓C:
(
)的離心率為
,點(1,
)在橢圓C上.
(1)求橢圓C的方程;
(2)若橢圓C的兩條切線交于點M(4,
),其中
,切點分別是A、B,試利用結論:在橢圓
上的點(
)處的橢圓切線方程是
,證明直線AB恒過橢圓的右焦點
;
(3)試探究
的值是否恒為常數,若是,求出此常數;若不是,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(2011•湖北)平面內與兩定點A1(﹣a,0),A2(a,0)(a>0)連線的斜率之積等于非零常數m的點的軌跡,加上A1、A2兩點所成的曲線C可以是圓、橢圓成雙曲線.
(1)求曲線C的方程,并討論C的形狀與m值的關系;
(2)當m=﹣1時,對應的曲線為C1;對給定的m∈(﹣1,0)∪(0,+∞),對應的曲線為C2,設F1、F2是C2的兩個焦點.試問:在C1上,是否存在點N,使得△F1NF2的面積S=|m|a2.若存在,求tanF1NF2的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知
、
為橢圓
的左右焦點,點
為其上一點,且有![]()
.
(1)求橢圓
的標準方程;
(2)過
的直線
與橢圓
交于
、
兩點,過
與
平行的直線
與橢圓
交于
、
兩點,求四邊形
的面積
的最大值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com