設(shè)橢圓
的焦點在
軸上
(Ⅰ)若橢圓
的焦距為1,求橢圓
的方程;
(Ⅱ)設(shè)
分別是橢圓的左、右焦點,
為橢圓
上第一象限內(nèi)的點,直線
交
軸與點
,并且
,證明:當(dāng)
變化時,點
在某定直線上.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓![]()
(a>b>0)拋物線![]()
,從每條曲線上取兩個點,將其坐標(biāo)記錄于下表中:![]()
| 4 | 1 | |||
| 2 | 4 | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓
的中心在原點,焦點在
軸上.若橢圓上的點
到焦點
、
的距離之和等于4.
(1)寫出橢圓
的方程和焦點坐標(biāo).
(2)過點
的直線與橢圓交于兩點
、
,當(dāng)
的面積取得最大值時,求直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
橢圓
:
的左、右焦點分別是
,離心率為
,過
且垂直于
軸的直線被橢圓
截得的線段長為
。
(Ⅰ)求橢圓
的方程;
(Ⅱ)點
是橢圓
上除長軸端點外的任一點,連接
,設(shè)
的角平分線
交
的長軸于點
,求
的取值范圍;
(Ⅲ)在(Ⅱ)的條件下,過點
作斜率為
的直線
,使
與橢圓
有且只有一個公共點,設(shè)直線的
斜率分別為
。若
,試證明
為定值,并求出這個定值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知拋物線
的頂點為原點,其焦點
到直線
的距離為
.設(shè)
為直線
上的點,過點
作拋物線
的兩條切線
,其中
為切點.
(1) 求拋物線
的方程;
(2) 當(dāng)點
為直線
上的定點時,求直線
的方程;
(3) 當(dāng)點
在直線
上移動時,求
的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓的一個頂點為A(0,-1),焦點在x軸上.若右焦點到直線
的距離為3.
(1)求橢圓的方程;
(2)設(shè)橢圓與直線
相交于不同的兩點M、N.當(dāng)
時,求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓C的中心在原點,焦點在x軸上,離心率為
,短軸長為4
.![]()
(I)求橢圓C的標(biāo)準(zhǔn)方程;
(II)直線x=2與橢圓C交于P、Q兩點,A、B是橢圓O上位于直線PQ兩側(cè)的動點,且直線AB的斜率為
.
①求四邊形APBQ面積的最大值;
②設(shè)直線PA的斜率為
,直線PB的斜率為
,判斷
+
的值是否為常數(shù),并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
求傾斜角是直線y=-
x+1的傾斜角的
,且分別滿足下列條件的直線方程:(1)經(jīng)過點(
,-1);(2)在y軸上的截距是-5.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com