【題目】如圖,橢圓
的左、右焦點(diǎn)分別為
,
,點(diǎn)
在橢圓上.
![]()
(1)求橢圓的方程;
(2)若A,B是橢圓上位于x軸上方的兩點(diǎn),直線
與直線
交于點(diǎn)P,
,求直線
的斜率.
【答案】(1)
(2)1
【解析】
(1)根據(jù)題意得到
,將點(diǎn)
代入橢圓方程,結(jié)合
,得到關(guān)于
的方程組,解出
,得到答案;(2)根據(jù)
得到
,從而得到
,根據(jù)對(duì)稱性得到
與橢圓的另一個(gè)交點(diǎn)
的坐標(biāo)與
的關(guān)系,從而得到
,得到
,再結(jié)合直線與橢圓聯(lián)立后得到的
,
,從而得到關(guān)于
的斜率的方程,得到答案.
解(1)因?yàn)闄E圓的左、右焦點(diǎn)分別為
,
,
所以
,
把點(diǎn)
代入橢圓方程,得到![]()
而在橢圓中
,
解得
,
所以所求的橢圓的標(biāo)準(zhǔn)方程為:
.
(2)設(shè)
交橢圓于另一點(diǎn)M,
因?yàn)?/span>
,
,
所以
,
所以
,所以
,
根據(jù)對(duì)稱性可知點(diǎn)
和點(diǎn)
關(guān)于原點(diǎn)對(duì)稱,
所以![]()
所以得到
,
設(shè)
,![]()
所以
,
設(shè)直線
,代入橢圓方程得
,
,
,
所以有![]()
所以
,
解得
,
由
,可知
,
故
.
所以
的斜率為1.
![]()
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2019年,隨著中國(guó)第一款5G手機(jī)投入市場(chǎng),5G技術(shù)已經(jīng)進(jìn)入高速發(fā)展階段.已知某5G手機(jī)生產(chǎn)廠家通過(guò)數(shù)據(jù)分析,得到如下規(guī)律:每生產(chǎn)手機(jī)
萬(wàn)臺(tái),其總成本為
,其中固定成本為800萬(wàn)元,并且每生產(chǎn)1萬(wàn)臺(tái)的生產(chǎn)成本為1000萬(wàn)元(總成本=固定成本+生產(chǎn)成本),銷售收入
萬(wàn)元滿足![]()
(1)將利潤(rùn)
表示為產(chǎn)量
萬(wàn)臺(tái)的函數(shù);
(2)當(dāng)產(chǎn)量
為何值時(shí),公司所獲利潤(rùn)最大?最大利潤(rùn)為多少萬(wàn)元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若數(shù)列
同時(shí)滿足:①對(duì)于任意的正整數(shù)
,
恒成立;②對(duì)于給定的正整數(shù)
,
對(duì)于任意的正整數(shù)
恒成立,則稱數(shù)列
是“
數(shù)列”.
(1)已知
判斷數(shù)列
是否為“
數(shù)列”,并說(shuō)明理由;
(2)已知數(shù)列
是“
數(shù)列”,且存在整數(shù)
,使得
,
,
,
成等差數(shù)列,證明:
是等差數(shù)列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知三棱錐O—ABC的側(cè)棱OA,OB,OC兩兩垂直,且OA=1,OB=OC=2,E是OC的中點(diǎn).
(1)求異面直線BE與AC所成角的余弦值;
(2)求二面角A—BE—C的余弦值.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若直線
與x軸,y軸的交點(diǎn)分別為A,B,圓C以線段AB為直徑.
(1)求圓C的標(biāo)準(zhǔn)方程;
(2)若直線l過(guò)點(diǎn)
且圓心C到l的距離為1,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】命題甲:“一個(gè)二面角的兩個(gè)半平面分別垂直于另一個(gè)二面角的兩個(gè)半平面,則這兩個(gè)二面角相等或互補(bǔ).”命題乙:“底面為正三角形,側(cè)面為等腰三角形的三棱錐是正三棱錐.”命題丙:“過(guò)圓錐的兩條母線的截面,以軸截面的面積最大.”其中真命題的個(gè)數(shù)是( )
A. 0 B. 1 C. 2 D. 3
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】共享單車是指由企業(yè)在校園、公交站點(diǎn)、商業(yè)區(qū)、公共服務(wù)區(qū)等場(chǎng)所提供的自行車單車共享服務(wù),由于其依托“互聯(lián)網(wǎng)+”,符合“低碳出行”的理念,已越來(lái)越多地引起了人們的關(guān)注.某部門為了對(duì)該城市共享單車加強(qiáng)監(jiān)管,隨機(jī)選取了50人就該城市共享單車的推行情況進(jìn)行問(wèn)卷調(diào)査,并將問(wèn)卷中的這50人根據(jù)其滿意度評(píng)分值(百分制)按照
分成5組,請(qǐng)根據(jù)下面尚未完成并有局部污損的頻率分布表和頻率分布直方圖(如圖所示)解決下列問(wèn)題:
頻率分布表
組別 | 分組 | 頻數(shù) | 頻率 |
第1組 |
| 8 | 0.16 |
第2組 |
|
| ▆ |
第3組 |
| 20 | 0.40 |
第4組 |
| ▆ | 0.08 |
第5組 |
| 2 |
|
合計(jì) | ▆ | ▆ |
![]()
(1)求
的值;
(2)若在滿意度評(píng)分值為
的人中隨機(jī)抽取2人進(jìn)行座談,求所抽取的2人中至少一人來(lái)自第5組的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知f(x)是定義在(0,+∞)上的增函數(shù),且滿足f(xy)=f(x)+f(y),f(2)=1.
(1)求f(8)的值;
(2)求不等式f(x)-f(x-2)>3的解集.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四棱錐
中,
平面
,底面
是正方形
,
為
中點(diǎn).
![]()
(1)求證:
平面
;
(2)求點(diǎn)
到平面
的距離;
(3)求二面角
的余弦值.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com