已知以角
為鈍角的
的內(nèi)角
的對(duì)邊分別為
、
、
,
,且
與
垂直。
(1)求角
的大小;
(2)求
的取值范圍.
(1)
;(2)![]()
解析試題分析:(1)利用
=0,結(jié)合正弦定理,求出sinB=
,B為鈍角,所以角B=
.
(2)利用和差化積化簡(jiǎn)cosA+cosC=2cos
cos
=
cos(C?
),由(1)知A∈(0,
),A+
∈(
,
),確定cosA+cosC的取值范圍即可.
試題解析:(1)∵
垂直
,∴
1分
由正弦定理得
3分
∵
,∴
, 又∵∠B是鈍角,∴∠B
6分
(2)![]()
9分
由(1)知A∈(0,
),
, 10分
,(6分) ∴
的取值范圍是
. 12分
考點(diǎn):(1)解三角形;(2)向量在解三角形中的應(yīng)用.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)△ABC的內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,且a+c=6,b=2,cosB=
.
(1)求a,c的值;
(2)求sin(A-B)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在△ABC中,角A,B,C對(duì)應(yīng)的邊分別是a,b,c.已知cos2A-3cos(B+C)=1.
(1)求角A的大小;
(2)若△ABC的面積S=5
,b=5,求sinBsinC的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
△ABC為一個(gè)等腰三角形形狀的空地,腰AC的長(zhǎng)為3(百米),底AB的長(zhǎng)為4(百米).現(xiàn)決定在空地內(nèi)筑一條筆直的小路EF(寬度不計(jì)),將該空地分成一個(gè)四邊形和一個(gè)三角形,設(shè)分成的四邊形和三角形的周長(zhǎng)相等,面積分別為S1和S2.
(1)若小路一端E為AC的中點(diǎn),求此時(shí)小路的長(zhǎng)度;
(2)若小路的端點(diǎn)E、F兩點(diǎn)分別在兩腰上,求
的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在銳角△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,向量m=(1,cosB),n=(sinB,-
),且m⊥n.
(1)求角B的大小.
(2)若△ABC的面積為
,a=2,求b的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)f(x)=2
sin xcos x+2cos2x+m在區(qū)間
上的最大值為2.
(1)求常數(shù)m的值;
(2)在△ABC中,內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,若f(A)=1,sin B=3sin C,△ABC的面積為
,求邊長(zhǎng)a.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,已知cos C+(cos A-
sin A)cos B=0.
(1)求角B的大小;
(2)若a+c=1,求b的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知
ABC中,角A,B,C的對(duì)邊分別為a,b,c, 若向量
與向量
共線(xiàn).
(1)求角C的大小;
(2)若
,求a,b的值.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com