已知函數(shù)

,若直線

是函數(shù)

圖象的一條切線.
(1)求函數(shù)

的解析式;
(2)若函數(shù)

圖象上的兩點

、

的橫坐標(biāo)依次為2和4,

為坐標(biāo)原點,求△

的面積.
(1)

;(2)

試題分析:(1)由

是函數(shù)

圖象的一條切線可知

的最大值為

,故求出

的最大值令其等于

,即可得到關(guān)于

的方程;(2)利用

的解析式求出點

的坐標(biāo), 再 求出

的長,然后利用余弦定理求出

的余弦值,在求出正弦值,最后代入

去求△

的面積。
(1)



2′

直線

是函數(shù)圖象的一條切線,

,解得

.

5′
(2)由(1)知,

,

6′

7′



9′
根據(jù)余弦定解得


10′

. 11′

的面積為

. 12′

求三角形的面積。
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知

(1)求函數(shù)

的最小正周期;
(2)求函數(shù)

的最大值,并指出此時

的值.
(3)求函數(shù)


的單調(diào)增區(qū)間
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知向量

向量

記

(1)求函數(shù)

的單調(diào)遞增區(qū)間;
(2)若

,求函數(shù)

的值域.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
函數(shù)f(x)=Asin(ωx+φ)(A,ω,φ是常數(shù),A>0,ω>0)的部分圖象如圖所示,下列結(jié)論:

①最小正周期為π;
②將f(x)的圖象向左平移

個單位,所得到的函數(shù)是偶函數(shù);
③f(0)=1;
④f(

)<f(

);
⑤f(x)=-f(

-x).
其中正確的是( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
設(shè)函數(shù)f(x)=sin(

-

)-2cos
2
.
(1)求y=f(x)的最小正周期及單調(diào)遞增區(qū)間;
(2)若函數(shù)y=g(x)與y=f(x)的圖象關(guān)于直線x=2對稱,求當(dāng)x∈[0,1]時,函數(shù)y=g(x)的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
函數(shù)

的圖像的一個對稱中心是( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
函數(shù)

的最大值為_________.
查看答案和解析>>