【題目】已知函數(shù)f(x)=4cosωxsin(ωx+
)(ω>0)的最小正周期為π.
(1)求ω的值;
(2)討論f(x)在區(qū)間[0,
]上的單調(diào)性.
【答案】
(1)解:f(x)=4cosωxsin(ωx+
)=2
sinωxcosωx+2
cos2ωx
=
(sin2ωx+cos2ωx)+
=2sin(2ωx+
)+
,
所以 T=
=π,∴ω=1.
(2)解:由(1)知,f(x)=2sin(2x+
)+
,
因?yàn)?≤x≤
,所以
≤2x+
≤
,
當(dāng)
≤2x+
≤
時(shí),即0≤x≤
時(shí),f(x)是增函數(shù),
當(dāng)
≤2x+
≤
時(shí),即
≤x≤
時(shí),f(x)是減函數(shù),
所以f(x)在區(qū)間[0,
]上單調(diào)增,在區(qū)間[
,
]上單調(diào)減
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱柱ABC﹣A1B1C1中,AA1C1C是邊長為4的正方形.平面ABC⊥平面AA1C1C,AB=3,BC=5. ![]()
(1)求證:AA1⊥平面ABC;
(2)求證二面角A1﹣BC1﹣B1的余弦值;
(3)證明:在線段BC1上存在點(diǎn)D,使得AD⊥A1B,并求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,O是坐標(biāo)原點(diǎn),兩定點(diǎn)A,B滿足|
|=|
|=
=2,則點(diǎn)集{P|
=λ
+μ
,|λ|+|μ|≤1,λ,μ∈R}所表示的區(qū)域的面積是( )
A.![]()
B.![]()
C.![]()
D.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P-ABCD中,PD⊥平面ABCD,
,∠ABC=∠BCD=90°,E為PB的中點(diǎn)。
![]()
(1)證明:CE∥面PAD.
(2)若直線CE與底面ABCD所成的角為45°,求四棱錐P-ABCD的體積。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}的通項(xiàng)公式為an=
則數(shù)列{an}中的最大項(xiàng)為( )
A.
B.![]()
C.
D.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)fn(x)=﹣1+x+
+
+…+
(x∈R,n∈N+),證明:
(1)對每個(gè)n∈N+ , 存在唯一的x∈[
,1],滿足fn(xn)=0;
(2)對于任意p∈N+ , 由(1)中xn構(gòu)成數(shù)列{xn}滿足0<xn﹣xn+p<
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩人輪流投籃,每人每次投一球.約定甲先投且先投中者獲勝,一直到有人獲勝或每人都已投球3次時(shí)投籃結(jié)束.設(shè)甲每次投籃投中的概率為
,乙每次投籃投中的概率為
,且各次投籃互不影響.
(1)求甲獲勝的概率;
(2)求投籃結(jié)束時(shí)甲的投籃次數(shù)ξ的分布列與期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某地區(qū)有小學(xué)150所,中學(xué)75所,大學(xué)25所.先采用分層抽樣的方法從這些學(xué)校中抽取30所學(xué)校對學(xué)生進(jìn)行視力調(diào)查,應(yīng)從小學(xué)中抽取 18 所學(xué)校,中學(xué)中抽取所學(xué)校.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com